scholarly journals Proteomics Analysis of Host Cells Infected with Infectious Bursal Disease Virus

2007 ◽  
Vol 7 (3) ◽  
pp. 612-625 ◽  
Author(s):  
Xiaojuan Zheng ◽  
Lianlian Hong ◽  
Lixue Shi ◽  
Junqing Guo ◽  
Zhen Sun ◽  
...  
2017 ◽  
Vol 92 (2) ◽  
Author(s):  
Chengjin Ye ◽  
Yu Wang ◽  
Enli Zhang ◽  
Xinpeng Han ◽  
Zhaoli Yu ◽  
...  

ABSTRACTInfectious bursal disease virus (IBDV) is a bisegmented double-strand RNA (dsRNA) virus of theBirnaviridaefamily. While IBDV genomic dsRNA lacks a 5′ cap, the means by which the uncapped IBDV genomic RNA is translated effectively is unknown. In this study, we describe a cap-independent pathway of translation initiation of IBDV uncapped RNA that relies on VP1 and VP3. We show that neither purified IBDV genomic dsRNA nor the uncapped viral plus-sense RNA transcripts were directly translated and rescued into infectious viruses in host cells. This defect in translation of the uncapped IBDV genomic dsRNA was rescued bytrans-supplementation of the viral proteins VP1 and VP3 which was dependent on both the intact polymerase activity of VP1 and the dsRNA binding activity of VP3. Deletion analysis showed that both 5′ and 3′ untranslated regions (UTRs) of IBDV dsRNA were essential for VP1/VP3-dependent translation initiation. Significantly, VP1 and VP3 could also mediate the recovery of infectious IBDV from the authentic minus-sense strand of IBDV dsRNA. Moreover, downregulation or inhibition of the cap-binding protein eIF4E did not decrease but, rather, enhanced the VP1/VP3-mediated translation of the uncapped IBDV RNA. Collectively, our findings for the first time reveal that VP1 and VP3 compensate for the deficiency of the 5′ cap and replace eIF4E to confer upon the uncapped IBDV RNA the ability to be translated and rescued into infectious viruses.IMPORTANCEA key point of control for virus replication is viral translation initiation. The current study shows that the uncapped IBDV RNA cannot be translated into viral proteins directly by host translation machinery and is thus noninfectious. Our results constitute the first direct experimental evidence that VP1 and VP3 are required and sufficient to initiate translation of uncapped IBDV genomic RNA by acting as a substitute for cap and replacing the cap-binding protein eIF4E. Significantly, VP1/VP3 mediate the recovery of infectious IBDV not only from the plus-sense strand but also from the minus-sense strand of the IBDV dsRNA. These findings provide not only new insights into the molecular mechanisms of the life cycle of IBDV but also a new tool for an alternative strategy for the recovery of IBDV from both the plus- and the minus-sense strands of the viral genomic dsRNA.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Mengjiao Fu ◽  
Bin Wang ◽  
Xiang Chen ◽  
Zhiyuan He ◽  
Yongqiang Wang ◽  
...  

ABSTRACTMicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally through silencing or degrading their targets, thus playing important roles in the immune response. However, the role of miRNAs in the host response against infectious bursal disease virus (IBDV) infection is not clear. In this study, we show that the expression of a series of miRNAs was significantly altered in DF-1 cells after IBDV infection. We found that the miRNA gga-miR-130b inhibited IBDV replication via targeting the specific sequence of IBDV segment A and enhanced the expression of beta interferon (IFN-β) by targeting suppressors of cytokine signaling 5 (SOCS5) in host cells. These findings indicate that gga-miR-130b-3p plays a crucial role in host defense against IBDV infection.IMPORTANCEThis work shows that gga-miR-130b suppresses IBDV replication via directly targeting the viral genome and cellular SOCS5, the negative regulator for type I interferon expression, revealing the mechanism underlying gga-miR-130-induced inhibition of IBDV replication. This information will be helpful for the understanding of how host cells combat pathogenic infection by self-encoded small RNA and furthers our knowledge of the role of microRNAs in the cell response to viral infection.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Nian Wang ◽  
Lizhou Zhang ◽  
Yuming Chen ◽  
Zhen Lu ◽  
Li Gao ◽  
...  

Nonstructural protein VP4, a serine protease of infectious bursal disease virus (IBDV) that catalyzes the hydrolysis of polyprotein pVP2-VP4-VP3 to form the viral proteins VP2, VP4, and VP3, is essential to the replication of IBDV. However, the interacting partners of VP4 in host cells and the effects of the interaction on the IBDV lifecycle remain incompletely elucidated. In this study, using the yeast two-hybrid system, the putative VP4-interacting partner cyclophilin A (CypA) was obtained from a chicken embryo fibroblast (CEF) expression library. CypA was further confirmed to interact with VP4 of IBDV using co-immunoprecipitation (CO-IP), GST pull-down, and confocal microscopy assays. Moreover, we found that the overexpression of CypA suppressed IBDV replication, whereas the knock-down of CypA by small interfering RNAs promoted the replication of IBDV. Taken together, our findings indicate that the host cell protein CypA interacts with viral VP4 and inhibits the replication of IBDV.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 543
Author(s):  
Jiaxin Li ◽  
Shijun J. Zheng

Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV–host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Xueyan Duan ◽  
Mingliang Zhao ◽  
Yongqiang Wang ◽  
Xiaoqi Li ◽  
Hong Cao ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets and play important roles in the host response to pathogenic infection. Although infectious bursal disease virus (IBDV)-induced apoptosis in host cells has been established, the underlying molecular mechanism is not completely unraveled. Here, we show that infection of DF-1 cells by IBDV induced gga-miR-16-5p (chicken miR-16-5p) expression via demethylation of the pre-miR-16-2 (gga-miR-16-5p precursor) promoter. We found that ectopic expression of gga-miR-16-5p in DF-1 cells enhanced IBDV-induced apoptosis by directly targeting the cellular antiapoptotic protein B-cell lymphoma 2 (Bcl-2), facilitating IBDV replication in DF-1 cells. In contrast, inhibition of endogenous miR-16-5p markedly suppressed apoptosis associated with enhanced Bcl-2 expression, arresting viral replication in DF-1 cells. Furthermore, infection of DF-1 cells with IBDV reduced Bcl-2 expression, and this reduction could be abolished by inhibition of gga-miR-16-5p expression. Moreover, transfection of DF-1 cells with gga-miR-16-5p mimics enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation, and inhibition of caspase-3 decreased IBDV growth in DF-1 cells. Thus, epigenetic upregulation of gga-miR-16-5p expression by IBDV infection enhances IBDV-induced apoptosis by targeting the cellular antiapoptotic protein Bcl-2, facilitating IBDV replication in host cells. IMPORTANCE Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive disease in young chickens, causing severe economic losses to stakeholders across the globe. Although IBD virus (IBDV)-induced apoptosis in the host has been established, the underlying mechanism is not very clear. Here, we show that infection of DF-1 cells by IBDV upregulated gga-miR-16-5p expression via demethylation of the pre-miR-16-2 promoter. Overexpression of gga-miR-16-5p enhanced IBDV-induced apoptosis associated with increased cytochrome c release and caspase-9 and -3 activation. Importantly, we found that IBDV infection induced expression of gga-miR-16-5p that triggered apoptosis by targeting Bcl-2, favoring IBDV replication, while inhibition of gga-miR-16-5p in IBDV-infected cells restored Bcl-2 expression, slowing down viral growth, indicating that IBDV induces apoptosis by epigenetic upregulation of gga-miR-16-5p expression. These findings uncover a novel mechanism employed by IBDV for its own benefit, which may be used as a potential target for intervening IBDV infection.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 142
Author(s):  
Yulong Wang ◽  
Nan Jiang ◽  
Linjin Fan ◽  
Li Gao ◽  
Kai Li ◽  
...  

Infectious bursal disease (IBD), an immunosuppressive disease of young chickens, is caused by infectious bursal disease virus (IBDV). Novel variant IBDV (nVarIBDV), a virus that can evade immune protection against very virulent IBDV (vvIBDV), is becoming a threat to the poultry industry. Therefore, nVarIBDV-specific vaccine is much needed for nVarIBDV control. In this study, the VP2 protein of SHG19 (a representative strain of nVarIBDV) was successfully expressed using an Escherichia coli expression system and further purified via ammonium sulfate precipitation and size-exclusion chromatography. The purified protein SHG19-VP2-466 could self-assemble into 25-nm virus-like particle (VLP). Subsequently, the immunogenicity and protective effect of the SHG19-VLP vaccine were evaluated using animal experiments, which indicated that the SHG19-VLP vaccine elicited neutralization antibodies and provided 100% protection against the nVarIBDV. Furthermore, the protective efficacy of the SHG19-VLP vaccine against the vvIBDV was evaluated. Although the SHG19-VLP vaccine induced a comparatively lower vvIBDV-specific neutralization antibody titer, it provided good protection against the lethal vvIBDV. In summary, the SHG19-VLP candidate vaccine could provide complete immune protection against the homologous nVarIBDV as well as the heterologous vvIBDV. This study is of significance to the comprehensive prevention and control of the recent atypical IBD epidemic.


Sign in / Sign up

Export Citation Format

Share Document