Individual Differences in Subtle Awareness and Levels of Awareness: Olfaction as a Model System

Author(s):  
Gary E.R. Schwartz
Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 370 ◽  
Author(s):  
Natalie J. Lemanski ◽  
Chelsea N. Cook ◽  
Brian H. Smith ◽  
Noa Pinter-Wollman

The emergence of collective behavior from local interactions is a widespread phenomenon in social groups. Previous models of collective behavior have largely overlooked the impact of variation among individuals within the group on collective dynamics. Honey bees (Apis mellifera) provide an excellent model system for exploring the role of individual differences in collective behavior due to their high levels of individual variation and experimental tractability. In this review, we explore the causes and consequences of individual variation in behavior for honey bee foraging across multiple scales of organization. We summarize what is currently known about the genetic, developmental, and neurophysiological causes of individual differences in learning and memory among honey bees, as well as the consequences of this variation for collective foraging behavior and colony fitness. We conclude with suggesting promising future directions for exploration of the genetic and physiological underpinnings of individual differences in behavior in this model system.


2020 ◽  
Author(s):  
Jamie Ward

The aim of this article is to reposition synaesthesia as model system for understanding variation in the construction of the human mind and brain. People with synaesthesia inhabit a remarkable mental world in which numbers can be coloured, words can have tastes, and music is a visual spectacle. Synaesthesia has now been documented for over two hundred years but key questions remain unanswered about why it exists, and what such conditions might mean for theories of the human mind. This article argues we need to rethink synaesthesia as not just representing exceptional experiences, but as a product of an unusual neurodevelopmental cascade from genes to brain to cognition of which synaesthesia is only one outcome. Specifically, differences in the brains of synaesthetes support a distinctive way of thinking (enhanced memory, imagery etc.) and may also predispose towards particular clinical vulnerabilities. In effect, synaesthesia can act as a paradigmatic example of a neuropsychological approach to individual differences.


2018 ◽  
Vol 41 ◽  
Author(s):  
Benjamin C. Ruisch ◽  
Rajen A. Anderson ◽  
David A. Pizarro

AbstractWe argue that existing data on folk-economic beliefs (FEBs) present challenges to Boyer & Petersen's model. Specifically, the widespread individual variation in endorsement of FEBs casts doubt on the claim that humans are evolutionarily predisposed towards particular economic beliefs. Additionally, the authors' model cannot account for the systematic covariance between certain FEBs, such as those observed in distinct political ideologies.


2019 ◽  
Vol 42 ◽  
Author(s):  
Peter C. Mundy

Abstract The stereotype of people with autism as unresponsive or uninterested in other people was prominent in the 1980s. However, this view of autism has steadily given way to recognition of important individual differences in the social-emotional development of affected people and a more precise understanding of the possible role social motivation has in their early development.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2019 ◽  
Vol 42 ◽  
Author(s):  
Emily F. Wissel ◽  
Leigh K. Smith

Abstract The target article suggests inter-individual variability is a weakness of microbiota-gut-brain (MGB) research, but we discuss why it is actually a strength. We comment on how accounting for individual differences can help researchers systematically understand the observed variance in microbiota composition, interpret null findings, and potentially improve the efficacy of therapeutic treatments in future clinical microbiome research.


Author(s):  
D. C. Williams ◽  
D. E. Outka

Many studies have shown that the Golgi apparatus is involved in a variety of synthetic activities, and probably no Golgi product is more elaborate than the scales produced by various kinds of phytoflagellates. The formation of calcified scales (coccoliths, Fig. 1,2) of the coccolithophorid phytoflagellates provides a particularly interesting model system for the study of biological mineralization, and the sequential formation of Golgi products.The coccoliths of Hymenomonas carterae consist of a scale-like base (Fig. 2 and 4, b) with a highly structured calcified (CaCO3) rim composed of two distinct elements which alternate about the base periphery (Fig. 1 and 3, A, B). Each element is enveloped by a sheath-like organic matrix (Fig. 3; Fig. 4, m).


Author(s):  
Masako Osumi ◽  
Misuzu Nagano ◽  
Hiroko Kazama

We have found that microbodies appeared profusely together with a remarkable increase in catalase activity in normal alkane-grown cells of hydrocarbon-utilizing Candida yeasts, and that the microbodies multiplied by division in these cells. These features of Candida yeasts seem to provide a useful model system for studies on the biogenesis of the microbody. Subsequently, we have succeeded in isolation of Candida microbodies in an apparently native state, as judged biochemically and morphologically. The presence of DNA in the purified microbody fraction thus obtained was proved by the diphenylamine method. DNA molecule of about 15 urn in contour length was released from an isolated microbody. The physicochemical analyses of the microbody DNA revealed that its buoyant density differed from nuclear and mitochondrial DNAs. All these results lead us to the possibility that there is a novel type of DNA in microbodies.


Author(s):  
M.J. Witcomb ◽  
U. Dahmen ◽  
K.H. Westmacott

Cu-Cr age-hardening alloys are of interest as a model system for the investigation of fcc/bcc interface structures. Several past studies have investigated the morphology and interface structure of Cr precipitates in a Cu matrix (1-3) and good success has been achieved in understanding the crystallography and strain contrast of small needle-shaped precipitates. The present study investigates the effect of small amounts of phosphorous on the precipitation behavior of Cu-Cr alloys.The same Cu-0.3% Cr alloy as was used in earlier work was rolled to a thickness of 150 μm, solution treated in vacuum at 1050°C for 1h followed by quenching and annealing for various times at 820 and 863°C.Two laths and their corresponding diffraction patterns in an alloy aged 2h at 820°C are shown in correct relative orientation in Fig. 1. To within the limit of accuracy of the diffraction patterns the orientation relationship was that of Kurdjumov-Sachs (KS), i.e. parallel close-packed planes and directions.


Author(s):  
V.J. Montpetit ◽  
S. Dancea ◽  
L. Tryphonas ◽  
D.F. Clapin

Very large doses of pyridoxine (vitamin B6) are neurotoxic in humans, selectively affecting the peripheral sensory nerves. We have undertaken a study of the morphological and biochemical aspects of pyridoxine neurotoxicity in an animal model system. Early morphological changes in dorsal root ganglia (DRG) associated with pyridoxine megadoses include proliferation of neurofilaments, ribosomes, rough endoplasmic reticulum, and Golgi complexes. We present in this report evidence of the formation of unique aggregates of microtubules and membranes in the proximal processes of DRG which are induced by high levels of pyridoxine.


Sign in / Sign up

Export Citation Format

Share Document