Affective Priming Effects in the Left and Right Cerebral Hemispheres in Patients With Alzheimer's Disease

2002 ◽  
Vol 9 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Rémy Versace ◽  
Agnès Auge ◽  
Catherine Thomas-Antérion ◽  
Bernard Laurent
2021 ◽  
pp. 1-12
Author(s):  
Jianlin Wang ◽  
Pan Wang ◽  
Yuan Jiang ◽  
Zedong Wang ◽  
Hong Zhang ◽  
...  

Background: The hippocampus with varying degrees of atrophy was a crucial neuroimaging feature resulting in the declining memory and cognitive function in Alzheimer’s disease (AD). However, the abnormal dynamic functional connectivity (DFC) in both white matter (WM) and gray matter (GM) from the left and right hippocampus remains unclear. Objective: To explore the abnormal DFC within WM and GM from the left and right hippocampus across the different stages of AD. Methods: Current study employed the OASIS-3 dataset including 43 mild cognitive impairment (MCI), 71 pre-mild cognitive impairment (pre-MCI), and matched 87 normal cognitive (NC). Adopting the FMRIB’s Integrated Registration and Segmentation Tool, we obtained the left and right hippocampus mask. Based on above hippocampus mask as seed point, we calculated the DFC between left/right hippocampus and all voxel time series within whole brain. One-way ANOVA analysis was performed to estimate the abnormal DFC among MCI, pre-MCI, and NC groups. Results: We found that MCI and pre-MCI groups showed the common abnormalities of DFC in the Temporal_Mid_L, Cingulum_Mid_L, and Thalamus_L. Specific abnormalities were found in the Cerebelum_9_L and Precuneus of MCI group and Vermis_8 and Caudate_L of pre-MCI group. In addition, we found that DFC within WM regions also showed the common low DFC for the Cerebellum anterior lobe-WM, Corpus callosum, and Frontal lobe-WM in MCI and pre-MCI group. Conclusion: Our findings provided a novel information for discover the pathophysiological mechanisms of AD and indicate WM lesions were also an important cause of cognitive decline in AD.


2008 ◽  
Vol 189 (4) ◽  
pp. 473-483 ◽  
Author(s):  
Soledad Ballesteros ◽  
José M. Reales ◽  
Julia Mayas ◽  
Morton A. Heller

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 465
Author(s):  
Manuel Curado ◽  
Francisco Escolano ◽  
Miguel A. Lozano ◽  
Edwin R. Hancock

Alzheimer’s disease has been extensively studied using undirected graphs to represent the correlations of BOLD signals in different anatomical regions through functional magnetic resonance imaging (fMRI). However, there has been relatively little analysis of this kind of data using directed graphs, which potentially offer the potential to capture asymmetries in the interactions between different anatomical brain regions. The detection of these asymmetries is relevant to detect the disease in an early stage. For this reason, in this paper, we analyze data extracted from fMRI images using the net4Lap algorithm to infer a directed graph from the available BOLD signals, and then seek to determine asymmetries between the left and right hemispheres of the brain using a directed version of the Return Random Walk (RRW). Experimental evaluation of this method reveals that it leads to the identification of anatomical brain regions known to be implicated in the early development of Alzheimer’s disease in clinical studies.


2019 ◽  
Vol 32 (2) ◽  
pp. e100005 ◽  
Author(s):  
Huanqing Yang ◽  
Hua Xu ◽  
Qingfeng Li ◽  
Yan Jin ◽  
Weixiong Jiang ◽  
...  

BackgroundWith an aggravated social ageing level, the number of patients with Alzheimer’s disease (AD) is gradually increasing, and mild cognitive impairment (MCI) is considered to be an early form of Alzheimer’s disease. How to distinguish diseases in the early stage for the purposes of early diagnosis and treatment is an important topic.AimsThe purpose of our study was to investigate the differences in brain cortical thickness and surface area among elderly patients with AD, elderly patients with amnestic MCI (aMCI) and normal controls (NC).Methods20 AD patients, 21 aMCIs and 25 NC were recruited in the study. FreeSurfer software was used to calculate cortical thickness and surface area among groups.ResultsThe patients with AD had less cortical thickness both in the left and right hemisphere in 17 of the 36 brain regions examined than the patients with aMCI or NC. The patients with AD also had smaller cerebral surface area both in the left and right hemisphere in 3 of the 36 brain regions examined than the patients with aMCI or NC. Compared with the NC, the patients with aMCI only had slight atrophy in the inferior parietal lobe of the left hemisphere, and no significant difference was found.ConclusionAD, as well as aMCI (to a lesser extent), is associated with reduced cortical thickness and surface area in a few brain regions associated with cognitive impairment. These results suggest that cortical thickness and surface area could be used for early detection of AD.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
P. Zach ◽  
A. Bartoš ◽  
A. Lagutina ◽  
Z. Wurst ◽  
P. Gallina ◽  
...  

Introduction. Measurement of an- hippocampal area or volume is useful in clinical practice as a supportive aid for diagnosis of Alzheimer’s disease. Since it is time-consuming and not simple, it is not being used very often. We present a simplified protocol for hippocampal atrophy evaluation based on a single optimal slice in Alzheimer’s disease. Methods. We defined a single optimal slice for hippocampal measurement on brain magnetic resonance imaging (MRI) at the plane where the amygdala disappears and only the hippocampus is present. We compared an absolute area and volume of the hippocampus on this optimal slice between 40 patients with Alzheimer disease and 40 age-, education- and gender-mateched elderly controls. Furthermore, we compared these results with those relative to the size of the brain or the skull: the area of the optimal slice normalized to the area of the brain at anterior commissure and the volume of the hippocampus normalized to the total intracranial volume. Results. Hippocampal areas on the single optimal slice and hippocampal volumes on the left and right in the control group were significantly higher than those in the AD group. Normalized hippocampal areas and volumes on the left and right in the control group were significantly higher compared to the AD group. Absolute hippocampal areas and volumes did not significantly differ from corresponding normalized hippocampal areas as well as normalized hippocampal volumes using comparisons of areas under the receiver operating characteristic curves. Conclusion. The hippocampal area on the well-defined optimal slice of brain MRI can reliably substitute a complicated measurement of the hippocampal volume. Surprisingly, brain or skull normalization of these variables does not add any incremental differentiation between Alzheimer disease patients and controls or give better results.


Sign in / Sign up

Export Citation Format

Share Document