Chemical weed control as an element in the cropping system.

Author(s):  
S. Hakansson
Keyword(s):  
1990 ◽  
Vol 4 (3) ◽  
pp. 631-634 ◽  
Author(s):  
R. E. Blackshaw

Field studies were conducted in 1987, 1988, and 1989 at Lethbridge, Alberta to determine suitable herbicides for the control of Russian thistle and kochia in field corn grown in a dryland cropping system. Soil-applied atrazine or cyanazine provided inconsistent control of these weeds under dryland conditions. Combining inter-row tillage or 2,4-D applied postemergence with soil-applied atrazine improved the consistency of weed control over years. Postemergence atrazine and dicamba plus 2,4-D controlled Russian thistle and kochia in all years. Corn yields reflected the level of weed control attained with each treatment. The suitability of the various treatments for weed control in corn grown under dryland crop production systems is discussed.


2020 ◽  
Vol 34 (6) ◽  
pp. 857-862
Author(s):  
Jacob W. Fischer ◽  
Mark E. Thorne ◽  
Drew J. Lyon

AbstractRush skeletonweed is an aggressive perennial weed that establishes itself on land in the Conservation Reserve Program (CRP), and persists during cropping following contract expiration. It depletes critical soil moisture required for yield potential of winter wheat. In a winter wheat/fallow cropping system, weed control is maintained with glyphosate and tillage during conventional fallow, and with herbicides only in no-till fallow. Research was conducted for control of rush skeletonweed at two sites in eastern Washington, Lacrosse and Hay, to compare the effectiveness of a weed-sensing sprayer and broadcast applications of four herbicides (aminopyralid, chlorsulfuron + metsulfuron, clopyralid, and glyphosate). Experimental design was a split-plot with herbicide and application type as main and subplot factors, respectively. Herbicides were applied in the fall at either broadcast or spot-spraying rates depending on sprayer type. Rush skeletonweed density in May was reduced with use of aminopyralid (1.1 plants m−2), glyphosate (1.4 plants m−2), clopyralid (1.7 plants m−2), and chlorsulfuron + metsulfuron (1.8 plants m−2) compared with the nontreated check (2.6 plants m−2). No treatment differences were observed after May 2019. There was no interaction between herbicide and application system. Area covered using the weed-sensing sprayer was, on average, 52% (P < 0.001) less than the broadcast application at the Lacrosse location but only 20% (P = 0.01) at the Hay location. Spray reduction is dependent on foliar cover in relation to weed density and size. At Lacrosse, the weed-sensing sprayer reduced costs for all herbicide treatments except aminopyralid, with savings up to US$6.80 per hectare. At Hay, the weed-sensing sprayer resulted in economic loss for all products because of higher rush skeletonweed density. The weed-sensing sprayer is a viable fallow weed control tool when weed densities are low or patchy.


2011 ◽  
Vol 3 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Hamdollah ESKANDARI ◽  
Kamyar KAZEMI

A field experiment was carried out in Ramhormoz, Iran during the 2008-2009 growing season to investigate the effects of different planting pattern of intercropping on environmental resource consumption and weed biomass. A randomized complete block design (RCBD) with three replications was employed to compare the treatments. Treatments included maize sole crop (M), cow pea sole crop (C), within row intercropping (I1), row intercropping (I2) and mix cropping (I3). The density of intercropping was according to replacement design (one maize replaced by three cow pea plants). The results showed that environmental resource consumption was significantly (P?0.05) affected by cropping system, where PAR interception, moisture and nutrients uptake were higher in intercropping systems compared to sole crop systems. Regarding to weed control, intercrops were more effective than sole crops and it was related to lower availability of environmental resources for weeds in intercropping systems.


1994 ◽  
Vol 34 (7) ◽  
pp. 959 ◽  
Author(s):  
MAE Lattimore

Legume-based pastures have long been an integral part of rice growing in the southern New South Wales irrigation areas and still offer potential to improve the productivity, profitability, and sustainability of the temperate rice-cropping system.This paper reviews both historical and current aspects of pastures in temperate rice rotations in southern New South Wales and highlights the importance of pastures in sustaining this cropping system as environmental pressures increase. Topics discussed include pasture species and rotations, their role in improving soil fertility and sustainability, the value of pastures in weed control, and their management for maximum profitability.


2015 ◽  
Vol 29 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Neeta Soni ◽  
Ramon G. Leon ◽  
John E. Erickson ◽  
Jason A. Ferrell ◽  
Maria L. Silveira

Biochar and vinasse are by-products of biofuel production that can be used as soil amendments. However, their addition to the soil might affect PRE herbicide activity. Although studies have shown that biochar has a high herbicide adsorption capacity, there is little information available about biochar effect on weed control especially under field conditions. Therefore, the objective of this study was to determine the influence of biochar and vinasse application on atrazine and pendimethalin availability and herbicide activity underin vitroand field conditions.In vitroatrazine and pendimethalin herbicidal activities were not influenced by vinasse addition, but biochar application reduced atrazine and pendimethalin injury for all evaluated species. A sorption experiment confirmed high affinity of biochar for atrazine and pendimethalin. Linear regression analysis showed that the slope for atrazine and pendimethalin adsorption was 16 and 4 times higher in soil with biochar than in soil alone. Under field conditions, biochar at 0.5 kg m−2reduced atrazine and pendimethalin weed control 75% and 60%, respectively. These results suggested that the use of biochar as a soil amendment in cropping system could decrease PRE herbicide efficacy. Therefore, mitigating practices such as the use of higher rates or reliance on POST herbicides and cultivation might be necessary to ensure proper weed control.


Weed management is a new term for the age-old practice of employing all available means, in a planned way, to keep weed populations under control. It seeks to distinguish the systematic approach to weed control, based on scientific knowledge and rational strategies, from the pragmatic destruction of weeds. The remarkable efficiency of herbicides has in recent years emphasized the latter and allowed revolutionary methods of crop production to be practised. These have, however, led to serious new weed problems which in turn require more intensive herbicide use. The need for a weed management approach is increasingly recognized. New opportunities for this are provided by the availability of numerous herbicides and plant growth regulators and a growing understanding of the biology, ecology and population dynamics of weeds in relation to crop production systems. Examples discussed include: systematic control of grass weeds in intensive cereals in Britain, weed control in rice and in soybeans, the control of aquatic weeds by biological and chemical methods and an experimental zero-tillage cropping system for the humid tropics based on herbicides, growth regulators and ground-cover leguminous crops. In such management systems, interference of weed behaviour by exogenous growth regulators is likely to be of increasing significance. Constraints on the adoption of weed management practices include lack of support for weed science as a discipline, limited appeal to the agrochemical industry and inadequate extension services in many countries.


2019 ◽  
Vol 51 (1) ◽  
pp. 23
Author(s):  
Sushma Saroj Surin ◽  
A.B. Ekka ◽  
M.K. Singh ◽  
R.R. Upasani

Sign in / Sign up

Export Citation Format

Share Document