scholarly journals Effects of wheat-flour and oat mill fractions on jejunal flow, starch degradation and absorption of glucose over an isolated loop of jejunum in pigs

1994 ◽  
Vol 72 (2) ◽  
pp. 299-313 ◽  
Author(s):  
Helle N. Johansen ◽  
K. E. Bach Knudsen

The effect of cereal-based diets varying in dietary fibre (DF) on gastric emptying and glucose absorption over an isolated loop of jejunum was studied in four pigs fitted with two sets of re-entrant cannulas. The pigs were fed on either a wheat-flour diet or three diets based on oat flour (endosperm), rolled oats or oat bran containing different amounts of soluble DF. Mean transit time (MTT) of liquid estimated from the output from the first jejunal cannula was significantly higher with the two diets having the highest DF content, but MTT of dry matter (DM), starch, xylose and neutral non-starch polysaccharides (nNSP) was not correlated directly to the DF content of the diet. DF had a stimulatory effect on secretion of gastrointestinal juices, but the effect was not linearly correlated with the DF content of the diet. Starch was significantly degraded in digesta collected within 30 min after feeding with malto-oligosaccharides accounting for 140–147 g/kg total starch. The degradation was more extensive with higher DF and lower starch content of the diet. However, taking into account the differences in jejunal flow, the amount of malto-oligosaccharides available for absorption in the first 0.5 h decreased with higher levels of DF in the oat-based diets. The absorption of glucose from the isolated loop was 18–34 g/m intestine over an 8 h period with no significant differences between diets. This corresponded to a non-significant decrease in recovery of starch from 0.91 to 0.82 with increasing levels of DF and decreasing levels of starch in the diet. This suggests that the capacity for absorption of large doses of starch entering the proximal small intestine after ingestion of a carbohydrate-rich cereal-based diet has a major influence on the absorption at this site. Consequently any effect of DF on glucose absorption may be exerted either through the rate of gastric emptying or by impaired rate of absorption more distal in the small intestine and not by displacement of the site for starch absorption.

1994 ◽  
Vol 72 (5) ◽  
pp. 717-729 ◽  
Author(s):  
Helle N. Johansen ◽  
K. E. Bach knudsen

Four pigs fitted with two sets of re-entrant cannulas in the upper jejunum were used to study the effect of two oat-flour (F)- and oat-bran (B)-based diets without or with (FC and BC respectively) addition of 148 g wood cellulose/kg on jejunal flow and absorption of glucose over an isolated loop of jejunum. Mean transit time (MTT) of flow from the proximal re-entrant cannula increased from approximately 1·5 h with diet F to 2 h when feeding diet BC. Both the replacement of oat flour by oat bran and the supplementation of the diets with cellulose led to a significantly longer MTT for dry matter and the carbohydrates, except that cellulose did not have a significant effect on the MTT for the total non-starch polysaccharides. Only the addition of cellulose significantly delayed gastric emptying of the added liquid-phase (Polyethylene glycol 4000) and solid-phase (Cr2O3) markers, whereas no effect of the oat source used was seen. Feeding diets with a higher level of dietary fibre (DF) and lower content of starch, obtained by substitution with cellulose or by feeding oat bran instead of oat flour, reduced the recovery of starch from an isolated loop of jejunum. Consequently, the quantitative absorption of starch was not significantly different between diets when starch was related to the recovery of external markers. However, when related to the recovery of arabinoxylan (AX) there was a significantly lower absorption of starch from the bran-based diets in comparison with the flour-based diets. The capacity to digest and absorb the large quantities of starch entering the duodenum after a carbohydrate-rich meal appears to be the limiting factor for absorption in the upper jejunum. Therefore, any effect of DF on the rate of absorption of glucose is presumably an effect on gastric emptying rather than displacement of the site of starch absorption in the small intestine.


1990 ◽  
Vol 259 (1) ◽  
pp. G78-G85 ◽  
Author(s):  
M. L. Siegle ◽  
H. R. Schmid ◽  
H. J. Ehrlein

In the present study, effects of ileal infusions of nutrients on motor patterns of the proximal small intestine and on gastric emptying were investigated in dogs. An acaloric meal was administered orally, and equicaloric loads of amino acids, oleate, and glucose were infused into the ileum at different doses (0.3, 0.6, and 0.9 kJ/min). The computerized analysis of motor patterns was focused on the differentiation between stationary and propagated contractions recorded by closely spaced extraluminal strain gauges. All three nutrients exerted inhibitory effects on gastric emptying and on contraction force and frequency of the proximal small intestine. Additionally, the propulsive motor pattern induced by the acaloric meal was modulated by reducing the number of contraction waves and their length of spread. All the effects were dose dependent. Among the three nutrients, glucose significantly changed motility at lower doses compared with amino acids and oleate. We conclude that in dogs the ileal brake mechanism is induced by all three nutrients and that it influences not only contraction force and frequency but also the motor patterns of the proximal small intestine.


2000 ◽  
Vol 14 (suppl d) ◽  
pp. 141D-144D
Author(s):  
Georg Stacher

Epigastric fullness may be caused by a disordered gastric motor function, resulting in delayed gastric emptying, but may also be caused by rapid emptying, leading to a distention of the proximal small intestine. A rational diagnostic approach to a patient complaining of epigastric fullness is needed to reveal the underlying disorder or disease and to enable an adequate, targeted therapy. The clinical impression based on symptoms is unreliable and cannot distinguish function disorders and benign disease from severe conditions.


1960 ◽  
Vol 13 (2) ◽  
pp. 180 ◽  
Author(s):  
LEA Symons

The rate of absorption of D-glucose and L-histidine from the entire small intestine of the rat when measured by an intubation technique was not affected by infestation with the nematode Nippostrongylu8 muris. On the other hand, absorption of D-glucose from the infested jejunum when measured in vivo by a perfusion technique was severely reduced. The rate of gastric emptying was not affected by the infestation. There was a direct relationship between gastric emptying and the rate of absorption of glucose.


1971 ◽  
Vol 25 (1) ◽  
pp. 57-76 ◽  
Author(s):  
R. G. White ◽  
V. J. Williams ◽  
R. J. H. Morris

1. Rates of disappearance of glucose from ligated loops of small intestine in lambs, adult sheep and young rats were studied. The concentration of glucose in the lumen decreased exponentially with time, suggesting that within a range of concentrations of 166–277 m-moles/l glucose was absorbed mainly by passive diffusion.2. The rate of absorption of glucose from a 166 mM-solution based on either zero or first order kinetics and expressed as m-moles/m small intestine per h decreased along the intestine from the duodenum to the ileum in lambs and rats. The decrease was slight in adult sheep.3. The total absorptive capacity of the small intestine of adult grazing sheep for glucose from 166 mM-solutions (06 m-moles/kg body-weight per h) was approximately 25% of that for lambs less than 1 week of age.4. Young rats had a greater absorptive capacity of the small intestine (12.9m-moles/kg body-weight per h) than adult sheep of about 40 kg body-weight (0.6 m-moles/kg body-weight per h) and this largely reflected a longer small intestine per unit body-weight.5. The absorptive capacity of lambs for glucose was greater when the level of voluntary lactose intake was increased before an experiment. The absorptive capacity of the ileum of adult sheep given wheat was greater than that of grazing adult sheep.6. Developmental changes in glucose absorption are discussed in relation to normal changes in diet and to changes in the morphology of the small intestine with age.


2021 ◽  
Vol 50 (6) ◽  
Author(s):  
M.N.T. Shipandeni ◽  
C.W. Cruywagen ◽  
E. Raffrenato

The objective of the study was to quantify the potential of a starch binding agent (BioProtectTM) to reduce in vitro rumen starch degradation of maize and sorghum particles that varied in size. Maize and sorghum grain samples were ground through 2-mm sieves with a Wiley mill and subsequently sieved to obtain these sizes: less than 250, 250 - 500, 500 - 1180, and 1180 - 2000 μm (i.e., very fine to coarse). All fractions were analysed separately for starch content. Samples were treated 24 hours before fermentation by spraying BioProtect onto the substrate. Both treated and untreated samples were fermented in vitro for 0, 6, 12 and 24 hours to quantify starch degradability. Rates of degradability (kd) were calculated with a first-order decay model. BioProtect was effective in decreasing starch degradability and rates of degradability for both grains (P <0.0001). The product was more effective with smaller particle size, by reducing starch degradability 17% for the smallest particles as opposed to 7% for the largest particles. A time interaction was observed (P <0.0001), which showed that the highest impact of BioProtect occurred after 12 hours of fermentation for both grains. The starch binding agent resulted in an effective decrease of in vitro starch degradation, but results were affected by particle size and fermentation time. Starch digestion could possibly be shifted to the small intestine with BioProtect.


2007 ◽  
Vol 292 (5) ◽  
pp. R2089-R2099 ◽  
Author(s):  
Carrie A. Smith ◽  
Kathleen S. Curtis ◽  
James C. Smith ◽  
Edward M. Stricker

The present studies investigated the influence of presystemic signals on the control of thirst, salt appetite, and vasopressin (VP) secretion in rats during nonhypotensive hypovolemia. Rats were injected with 30% polyethylene glycol (PEG) solution, deprived of food and water overnight, and then allowed to drink water, 0.15 M NaCl, or 0.30 M NaCl. The PEG treatment, which produced 30–40% plasma volume deficits, elicited rapid intakes in an initial bout of drinking, but rats consumed much more 0.15 M NaCl than water or 0.30 M NaCl. In considering why drinking stopped sooner when water or concentrated saline was ingested, it seemed relevant that little or no change in systemic plasma Na+ concentration was observed during the initial bouts and that the partial repair of hypovolemia was comparable, regardless of which fluid was consumed. In rats that drank 0.15 M NaCl, gastric emptying was fastest and the combined volume of ingested fluid in the stomach and small intestine was largest. These and other observations are consistent with the hypothesis that fluid ingestion by hypovolemic rats is inhibited by distension of the stomach and proximal small intestine and that movement of dilute or concentrated fluid into the small intestine provides another presystemic signal that inhibits thirst or salt appetite, respectively. On the other hand, an early effect of water or saline consumption on VP secretion in PEG-treated rats was not observed, in contrast to recent findings in dehydrated rats. Thus the controls of fluid ingestion and VP secretion are similar but not identical during hypovolemia.


Author(s):  
Olalubi A. Oluwasogo ◽  
Owoyele B. Victor ◽  
Ayinla M. Tayo ◽  
Akintunde J. Kehinde

AbstractThe ability to absorb substances from the external environment is one of the features that make animals different from inanimate objects. In mammalian species, this quality is mainly the role of the small intestine. The process of absorption mainly takes place in the small intestine. This study was carried out to investigate the rate of glucose absorption in the intestine of albino rats and the effect of calcium and ouabain on the rate of glucose absorption.Albino rats weighing between 200 and 250 g were used for this experiment. Guts were isolated and cut to segments. Test solution was injected into each of the isolated segments, which were then assayed for glucose.The result revealed that the rate of glucose absorption in the intestine of albino rats were found to be 3.02×10Ouabain blocked the rate of absorption of glucose in the intestine of albino rats.


1964 ◽  
Vol 47 (3) ◽  
pp. 258-268 ◽  
Author(s):  
Gerald Friedman ◽  
Jerome D. Waye ◽  
Leonard A. Weingarten ◽  
Henry D. Janowitz

Sign in / Sign up

Export Citation Format

Share Document