scholarly journals Effects of a starch binding agent on in vitro rumen degradability of maize and sorghum starch

2021 ◽  
Vol 50 (6) ◽  
Author(s):  
M.N.T. Shipandeni ◽  
C.W. Cruywagen ◽  
E. Raffrenato

The objective of the study was to quantify the potential of a starch binding agent (BioProtectTM) to reduce in vitro rumen starch degradation of maize and sorghum particles that varied in size. Maize and sorghum grain samples were ground through 2-mm sieves with a Wiley mill and subsequently sieved to obtain these sizes: less than 250, 250 - 500, 500 - 1180, and 1180 - 2000 μm (i.e., very fine to coarse). All fractions were analysed separately for starch content. Samples were treated 24 hours before fermentation by spraying BioProtect onto the substrate. Both treated and untreated samples were fermented in vitro for 0, 6, 12 and 24 hours to quantify starch degradability. Rates of degradability (kd) were calculated with a first-order decay model. BioProtect was effective in decreasing starch degradability and rates of degradability for both grains (P <0.0001). The product was more effective with smaller particle size, by reducing starch degradability 17% for the smallest particles as opposed to 7% for the largest particles. A time interaction was observed (P <0.0001), which showed that the highest impact of BioProtect occurred after 12 hours of fermentation for both grains. The starch binding agent resulted in an effective decrease of in vitro starch degradation, but results were affected by particle size and fermentation time. Starch digestion could possibly be shifted to the small intestine with BioProtect.

2014 ◽  
Vol 94 (2) ◽  
pp. 349-356 ◽  
Author(s):  
E. Castillo-Lopez ◽  
T. J. Klopfenstein ◽  
S. C. Fernando ◽  
P. J. Kononoff

Castillo-Lopez, E., Klopfenstein, T. J., Fernando, S. C. and Kononoff, P. J. 2014. Effect of dried distillers’ grains and solubles when replacing corn or soybean meal on rumen microbial growth in vitro as measured using DNA as a microbial marker. Can. J. Anim. Sci. 94: 349–356. The objectives were to evaluate the use of rDNA markers to measure the effects of dried distillers’ grains with solubles (DDGS) and the potential treatment×time interaction on microbial crude protein (MCP) synthesis in vitro and secondly to measure the contribution of yeast based protein originating from DDGS. Treatments were: (1) CONT, control with no DDGS, but with alfalfa hay, corn silage, ground corn (GC) and soybean meal (SBM) included at 25% (DM basis); (2) LOWCORN, 20% DDGS (DM basis) replacing GC; (3) LOWSBM, 20% DDGS (DM basis) replacing SBM; and (4) LOWCORNSBM, 20% DDGS (DM basis) replacing 10% GC and 10% SBM. Treatments (0.5 g) were incubated in 50 mL of inoculum in duplicate. At 0, 4, 16, 32, 48 and 96 h of fermentation total DNA was extracted from each treatment and MCP was measured using rDNA markers. The sum of bacterial crude protein (BCP) and protozoal crude protein (PCP) was considered as MCP. Data were analyzed as a completely randomized design. The treatment×time interaction was tested and the SLICE option was included to evaluate the effect of treatment at each fermentation time point. There was a tendency to a treatment×time interaction (P=0.07) for MCP. Specifically, at 16 h, LOWCORNSBM yielded greater (P<0.05) MCP compared to either CONT or LOWCORN with estimates of 68.5, 33.8 and 23.3±8.9 mg g–1DM, for LOWCORNSBM, CONT and LOWCORN, respectively. At 48 h, however, LOWCORN yielded greater MCP (P<0.05) compared with LOWSBM with estimates of 72.2 and 32.5±8.9 mg g–1DM, for LOWCORN and LOWSBM, respectively. Yeast crude protein (YCP) was not affected (P=0.21) and averaged 0.04±0.02 mg g–1of substrate (DM basis). Overall, rDNA markers were effective for quantifying MCP, but further research on the methodology is needed. With DDGS inclusion, MCP was maintained; however, yeast cells were extensively degraded during fermentation.


2019 ◽  
Vol 15 (7) ◽  
pp. 725-734
Author(s):  
Erning Indrastuti ◽  
Teti Estiasih ◽  
Elok Zubaidah ◽  
Harijono

Background: High cyanide varieties of cassava must be detoxified before consumption. Several studies showed detoxification of cassava by slicing, submerged fermentation (soaking), solid state fermentation, and drying. One of traditional detoxification is combination of submerged and solid state fermentation and the effect of this processing on cyanide reduction and food properties has not been evaluation yet. Objective: This research studied the effect of solid state fermentation time on physicochemical, starch granule morphology, and in vitro starch digestibility of cassava flour from high cyanide varieties of Malang 4, Malang 6, and Sembung. Methods: Three varieties of high cyanide grated cassavas were soaked for 3 days in ratio of water to cassava 1:1. After draining for 1 hour, grated cassava was placed in a bamboo container and put in a humid place for 3-day solid state fermentation. Fermented grated cassavas were then dried, milled, and analyzed. Results: Solid state fermentation similarly affected cyanide reduction and characteristics of cassava flour for three high cyanide varieties. The detoxification process reduced cyanide to 89.70-93.42% and produced flour with a total cyanide of 8.25-10.89 mg HCN eq/kg dry matters, which is safe to consume. Fermentation decreased cyanide, starch content, titratable acidity, swelling power, and solubility; meanwhile pH, amylose content, water absorption, oil absorption, and in vitro starch digestibility increased in all three varieties studied. Submerged fermentation reduced the pH thus inhibiting the degradation of linamarin and cyanohydrin into free HCN. pH value was increased by solid state fermentation, from 4.43 to 6.90 that optimum for linamarin and cyanohydrin degradation into free HCN. The submerged and solid-state fermentation indeuce spontaneous microbial growth that affected chemical composition of cassava flour. The changes of structure and morphology of starch granules affected pasting properties, and Increased in vitro starch digestibility due to damaged granules. Conclusion: Solid-state fermentation reduced cyanide content of all three cassava varieties into the safe level for consumption, and aiso changed chemical, physical, and functional characteristics and starch digestibility of cassava flour.


1994 ◽  
Vol 72 (2) ◽  
pp. 299-313 ◽  
Author(s):  
Helle N. Johansen ◽  
K. E. Bach Knudsen

The effect of cereal-based diets varying in dietary fibre (DF) on gastric emptying and glucose absorption over an isolated loop of jejunum was studied in four pigs fitted with two sets of re-entrant cannulas. The pigs were fed on either a wheat-flour diet or three diets based on oat flour (endosperm), rolled oats or oat bran containing different amounts of soluble DF. Mean transit time (MTT) of liquid estimated from the output from the first jejunal cannula was significantly higher with the two diets having the highest DF content, but MTT of dry matter (DM), starch, xylose and neutral non-starch polysaccharides (nNSP) was not correlated directly to the DF content of the diet. DF had a stimulatory effect on secretion of gastrointestinal juices, but the effect was not linearly correlated with the DF content of the diet. Starch was significantly degraded in digesta collected within 30 min after feeding with malto-oligosaccharides accounting for 140–147 g/kg total starch. The degradation was more extensive with higher DF and lower starch content of the diet. However, taking into account the differences in jejunal flow, the amount of malto-oligosaccharides available for absorption in the first 0.5 h decreased with higher levels of DF in the oat-based diets. The absorption of glucose from the isolated loop was 18–34 g/m intestine over an 8 h period with no significant differences between diets. This corresponded to a non-significant decrease in recovery of starch from 0.91 to 0.82 with increasing levels of DF and decreasing levels of starch in the diet. This suggests that the capacity for absorption of large doses of starch entering the proximal small intestine after ingestion of a carbohydrate-rich cereal-based diet has a major influence on the absorption at this site. Consequently any effect of DF on glucose absorption may be exerted either through the rate of gastric emptying or by impaired rate of absorption more distal in the small intestine and not by displacement of the site for starch absorption.


2000 ◽  
Vol 2000 ◽  
pp. 93-93
Author(s):  
A. R. Moss ◽  
D.I. Givens ◽  
M Froment

The current UK Recommended Lists For Cereals (Anon., 1997), include grain quality information on each variety outlining its potential value to the miller, baker or maltster. These grain quality measures are used as a basis for premiums paid to producers. However, no such standards exist for feed grains with the exception that contracts often indicate a minimum specific weight. This is in spite of the fact that feed grains account for 41% of wheat and 50% of barley sales from UK produced cereals. Usage may be increased if its nutritive value was better defined to include information such as the proportion of the starch that is rumen degradable and the rate of degradation of this starch in the rumen. It is vital to know the quantity of starch available to the rumen since it is a major source of energy for microbial protein synthesis (see Reynolds et al., 1997). This study aimed to use the in vitro automated gas production (GP) technique to estimate rate and extent of starch degradation from a large population of wheat grains obtained from wide ranging agronomic conditions and relate this to chemical and quality parameters.


2007 ◽  
Vol 2007 ◽  
pp. 24-24
Author(s):  
B. Ramos ◽  
M. Champion ◽  
C. Poncet ◽  
M. Doreau ◽  
P. Nozière

The proportion of the starch that escapes rumen degradation varies from 5 to 65% of the starch intake. It depends on the feeding level and the nature of the cereal, and for a same cereal, on its endosperm hardness, related to genotype and maturity, and on the technological treatments, including particle size (Huntington et al., 2006). The intestinal digestion of starch escaping rumen degradation essentially takes place in the small intestine and varies between 15 to 85% of the starch that arrives into the duodenum. As in the rumen, this variability would essentially be due to the intrinsic features of the maize that determines the accessibility of the starch to the endogenous enzymes, in particular the endosperm hardness and the particle size. The aim of this work was to evaluate the rumen starch degradation of maize and its residue digestion in the small intestine as function of particle size and endosperm hardness.


1996 ◽  
Vol 75 (5) ◽  
pp. 749-755 ◽  
Author(s):  
Hans N. Englyst ◽  
Susan M. Kingman ◽  
Geoffrey J. Hudson ◽  
John H. Cummings

The digestibility of the starch in plant foods is highly variable, and is dependent on a number of factors, including the physical structure of both the starch and the food matrix. An in vitro technique has been developed to categorize starch in plant foods according to its likely rate and extent of digestion in the human small intestine. The in vitro method provides values for rapidly digestible starch, slowly digestible starch and resistant starch (RS). In the present study values for the RS content of foods, as measured by the analytical technique, were compared with the recovery of starch from these foods when fed to healthy ileostomates. Nine ileostomy subjects were given a polysaccharide-free diet with a breakfast supplement, on each of 2 d (two subjects) or 3 d (seven subjects), of biscuits made from wheat, potato or banana flours or from moist-heat-processed wheat or maize flours. RS intakes measured in vifro ranged from 8·5 to 15·0 g/d for the test biscuits, and mean starch recoveries in ileostomy effluent were 100·4 (n5, range 91−106)% of those values, but there was substantial variation between individuals. It is proposed that RS is defined as ‘the sum of starch and starch-degradation products that, on average, reach the human large intestine’. The analytical method for the measurement of RS in vitro based on this definition is shown to provide an accurate prediction of the average amount of starch that is likely to escape complete digestion and absorption in the human small intestine.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


2018 ◽  
Vol 8 (5) ◽  
pp. 78-84
Author(s):  
Uyen Tran Thi Ngoc ◽  
Nam Nguyen Khac ◽  
Dung Tran Huu

Background: The purpose of the study was to prepare acetylated wheat starches which have amylase hydrolysis resistant capacity to use as functional food supporting for diabetes treatment. Method: Acetate wheat starches were prepared by acetylation reaction of native wheat starch with different mole ratios of acetic anhydride. These starches were determined for the physicochemical properties by 1H-NMR, SEM, X-ray, DSC, solubility and swelling capacity, the resistant capacity by amylase hydrolysis in-vitro. Results: Acetate wheat starches were prepared successfully with the increase in acetyl content and degree of substitution corresponding with the increase of anhydride acetic, which resulted in the change of physicochemical properties of the wheat starches, including constitution, solubility, swelling capacity and contributed to the increase in resistant starch content in the acetate wheat starches. The AC150-9 containing 2.42% acetyl with degree of substitution 0,094 and resistant starch 32,11% is acceptable by FDA guideline about food safety. Conclusion: Acetate wheat starches contain low rate of digestive starch, while containing a higher proportion of resistant starch than natural wheat starch, possessing a high resistance to amylase activities. Thus, it is hope that this kind of starch to control the rapid increase of postprandual blood glucose response for diabetes treatments effectively. Key words: Acetate wheat starch, substitution, DS, RS, amylase


Sign in / Sign up

Export Citation Format

Share Document