scholarly journals Changes in susceptibility of tissues to lipid peroxidation after ingestion of various levels of docosahexaenoic acid and vitamin E

1997 ◽  
Vol 78 (4) ◽  
pp. 655-669 ◽  
Author(s):  
Kazuhiro Kubo ◽  
Morio Saito ◽  
Tadahiro Tadokoro ◽  
Akio Maekawa

To examine the effects of dietary docosahexaenoic acid (DHA) on the potential changes in endogenous lipid peroxidation in the liver and kidney, diets containing a fixed amount of vitamin E (VE; RRR-α-tocopherol equivalent; 134 mg/kg diet) and a graded amount of DHA at the levels of 0, 1.0, 3.4 and 8.7% of total dietary energy were fed to rats for 14 d (Expt 1). In Expt 2, diets containing a fixed amount of DHA (8.7% of total dietary energy) and a graded amount of VE at the levels of 54, 134 and 402 mg/kg were fed to rats for 15 d. In Expt 1 it was found that endogenous lipid peroxide contents of the liver and kidney, as measured by thiobarbituric acid value and chemiluminescence intensity, were higher, and their α-tocopherol contents lower than those of the controls, with a gradual increase and decrease in values respectively as the dietary DHA level increased (Expt 1). However, the contents of water-soluble antioxidants, i.e. ascorbic acid and non-protein-SH (glutathione), increased with increases in the dietary DHA level, while the Se-dependent glutathione peroxidase (EC 1.11.1.9) activities did not change or tended to be lower. When the graded level of VE was given to rats in Expt 2, lipid peroxide contents in the liver and kidney did not change significantly in response to the increasing levels of dietary VE, although their α-tocopherol contents were higher than control values, increasing with increases in the dietary VE levels. The lipid peroxide scavengers other than a-tocopherol changed similarly to those in Expt 1. The results obtained in Expts 1 and 2 indicate that DHA enhances the susceptibility of the liver and kidney to lipid peroxidation concomitant with higher levels of DHA in these tissues, as shown by the fatty acid composition. In addition, VE is unable to protect membranes of the liver and kidney rich in DHA from lipid peroxidation, even after ingestion of the highest level of VE. However, the liver lipid peroxide content of the group given the highest level of DHA was not as high as expected, based on the peroxidizability index which was calculated from the fatty acid composition of the liver lipid.

2000 ◽  
Vol 53 (5) ◽  
pp. 1025-1039 ◽  
Author(s):  
P.F. Surai ◽  
J-P. Brillard ◽  
B.K. Speake ◽  
E. Blesbois ◽  
F. Seigneurin ◽  
...  

1978 ◽  
Vol 174 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Catherine T. Hammer ◽  
Eric D. Wills

The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.


Alcohol ◽  
1992 ◽  
Vol 9 (4) ◽  
pp. 329-334 ◽  
Author(s):  
Sergei V. Pirozhkov ◽  
Cleamond D. Eskelson ◽  
Ronald R. Watson ◽  
Glen C. Hunter ◽  
Joseph J. Piotrowski ◽  
...  

1972 ◽  
Vol 27 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Ritva Poukka ◽  
Aili Oksanen

1. Fatty acid levels were studied in the tissues of 1-week-old calves receiving maize oil (in filled milk) with and without supplementary α-tocopherol. The calves that were not given vitamin E developed muscular dystrophy.2. Decreased amounts of linoleic acid and increased amounts of arachidonic acid were found in nearly all the lipid fractions of skeletal muscles, hearts, livers and kidneys of vitamin E-deficient calves. The concentration of the polyunsaturated fatty acids beyond arachidonic acid remained about the same in both groups. There was a significant decrease of 20:2Ω6 fatty acid in the phosphatidy1 choline, phosphatidy1 ethanolamine and free fatty acid fractions in the livers and kidneys of vitamin E-deficient calves.3. It is suggested that vitamin E has an inhibitory effect on the desaturating but not on the chain-elongation enzymes of microsomes in the liver and kidney.4. Maize-oil feeding had only a slight effect on erythrocyte fatty acid composition, and the erythrocyte haemolysis test was negative even in the vitamin E-deficient animals.


2001 ◽  
Vol 50 (1) ◽  
pp. 13-19
Author(s):  
Ken ANDO ◽  
Kunihide NAGATA ◽  
Rie YOSHIDA ◽  
Kiyomi KIKUGAWA ◽  
Masao SUZUKI

Sign in / Sign up

Export Citation Format

Share Document