scholarly journals Blood and urine acid–base status of premenopausal omnivorous and vegetarian women

1997 ◽  
Vol 78 (5) ◽  
pp. 683-693 ◽  
Author(s):  
D. Ball ◽  
R. J. Maughan

The effect of long-term differences in diet composition on whole-body acid–base status was examined in thirty-three young healthy females. The volunteers were recruited from two separate groups matched approximately for age, height and weight; one group regularly ate meat (omnivores; n 20) and one group did not (vegetarians; n 13). All subjects completed a 7 d weighed intake of food, and from their dietary records, total energy, carbohydrate (CHO), fat and protein content were estimated using computer-based food composition tables. During this week they reported to the laboratory on two occasions, following an overnight fast and separated by at least 48h. Arterialized venous blood samples were obtained on each visit and these were analysed for blood acid–base status. Haemoglobin and packed cell volume, serum total cholesterol and HDL-cholesterol, serum albumin and total protein were also determined. Two 24 h urine collections were completed; the volume was recorded and samples were analysed for pH, titratable acid and Mg and Ca concentration. Total energy intake of the omnivores was greater (P = 0.0003) than that of the vegetarian group. Dietary intake of CHO (P = 0.024), fat (P = 0.0054) and protein (P = 0.0002) were higher in the omnivorous group than in the vegetarians. There were no differences between the two groups with respect to blood CO2 partial pressure, plasma HCO3- and blood base excess, but blood pH was slightly higher in the omnivores (P = 0.064). Measures of urine acid–base status suggested a lower pH in the omnivore group, but this difference was not statistically significant; a greater titratable acid output was observed with the omnivorous group compared with the vegetarians (48.9 (se 20.3) ν. 35.3 (se 23.3) mEq/24h; P = 0.018). Although the dietary intake of Ca was not different between the two groups, urinary Ca excretion of the omnivores was significantly higher (3.87 (sd 1.34) ν. 3.22 (sd 1.20) mmol/24h) than that of the vegetarians (P = 0.014). It is suggested that the higher protein intake of the omnivores resulted in an increase in urinary total acid excretion, which may explain the higher rate of Ca excretion.

1986 ◽  
Vol 123 (1) ◽  
pp. 93-121 ◽  
Author(s):  
C. L. Milligan ◽  
C. M. Wood

Exhaustive exercise induced a severe short-lived (0–1 h) respiratory, and longer-lived (0–4 h) metabolic, acidosis in the extracellular fluid of the rainbow trout. Blood ‘lactate’ load exceeded blood ‘metabolic acid’ load from 1–12 h after exercise. Over-compensation occurred, so that by 8–12 h, metabolic alkalosis prevailed, but by 24 h, resting acid-base status had been restored. Acid-base changes were similar, and lactate levels identical, in arterial and venous blood. However, at rest venous RBC pHi was significantly higher than arterial (7.42 versus 7.31). After exercise, arterial RBC pHi remained constant, whereas venous RBC pHi fell significantly (to 7.18) but was fully restored by 1 h. Resting mean whole-body pHi, measured by DMO distribution, averaged approx. 7.25 at a pHe of approx. 7.82 and fell after exercise to a low of 6.78 at a pHe of approx. 7.30. Whole-body pHi was slower to recover than pHe, requiring up to 12 h, with no subsequent alkalosis. Whole-body ECFV decreased by about 70 ml kg-1 due to a fluid shift into the ICF. Net H+ excretion to the water increased 1 h after exercise accompanied by an elevation in ammonia efflux. At 8–12 h, H+ excretion was reduced to resting levels and at 12–24 h, a net H+ uptake occurred. Lactate excretion amounted to approx. 1% of the net H+ excretion and only approx. 2% of the whole blood load. Only a small amount of the anaerobically produced H+ in the ICF appeared in the ECF and subsequently in the water. By 24 h, all the H+ excreted had been taken back up, thus correcting the extracellular alkalosis. The bulk of the H+ load remained intracellular, to be cleared by aerobic metabolism.


1987 ◽  
Vol 410 (3) ◽  
pp. 257-262 ◽  
Author(s):  
Y. L. Hoogeveen ◽  
J. P. Zock ◽  
P. Rispens ◽  
W. G. Zijlstra

1989 ◽  
Vol 33 (6) ◽  
pp. 339 ◽  
Author(s):  
H. J. ADROGUE ◽  
N. RASHAD ◽  
A. B. GORIN ◽  
J. YACOUB ◽  
N. E. MADIAS

Shock ◽  
1995 ◽  
Vol 3 (5) ◽  
pp. 73
Author(s):  
G. Zunic ◽  
Z. Todorović ◽  
M. Prostran ◽  
S. Vujnov ◽  
J. Savić ◽  
...  

2005 ◽  
Vol 62 (4) ◽  
pp. 273-280 ◽  
Author(s):  
Gordana Zunic ◽  
Predrag Romic ◽  
Marina Vuceljic ◽  
Olivera Jovanikic

Background. In our previous experimental studies, we found evidence for the increase of nitric oxide (NO) formation immediately after blast injury. In the present study we investigated whether NO overproduction was a trait for the period immediately after blast injury in humans. Concomitant metabolic disturbances were also studied, and compared to the alterations in other traumatized patients. Methods. Blast casualties (group B, n = 13), surgical patients with the hip replacement or fractures, not exposed to blast effects (group S, n = 7) and healthy volunteers as controls (group C, n = 10), were examined. Both arterial and venous blood samples were taken within 6 hours, and 24 hours after blast injuries or surgical procedures, respectively. Plasma levels of nitrite/nitrate (NOx), superoxyde anion (O2.-), sulfhydrils (SH), malondialdehyde (MDA) as well as acid-base status and other biochemical parameters (glucose, urea, creatinine, total proteins, albumin) were measured. Results. Significant, but transient increase in plasma NOx levels occurred only in group B. It was associated with the significant increase of hemoglobin oxygen (sO2) saturation of the venous blood and the concomitant decrease of its arterial - venous difference. In group S the venous sO2 decreased, its arterial - venous difference increased, while NOx levels were within the control limits. In both groups, other parameters of arterial acid-base status were kept within the control limits throughout the examined period. The decrease of SH levels were similar in the examined groups, while the increase of O2 .- was greater in group B. Conclusion. Early NO overproduction was a trait of blast injuries in humans, contributing to the reduction of tissue the oxygenation and intensifying the oxidative cell damage that had to be considered in the therapy of casualties with blast injuries. These alterations were different from those observed in other surgical patients without blast injuries.


2013 ◽  
Vol 9 (4) ◽  
pp. 179
Author(s):  
Nurmasari Widyastuti ◽  
Muhammad Sulchan ◽  
Andrew Johan

Background: Metabolic syndrome prevalence increases with age and obesity. The metabolic syndrome is associated with alterations in renal function. Low urine pH has been described as a renal manifestation of the metabolic syndrome. Urine pH is a simple and inexpensive method for determining acid-base status. Recent studies suggest that acid-base status is associated with dietary intake.Objective: To examine relationship between dietary intake, components of metabolic syndrome and urine pH among the elderly.Method: Subjects of this cross-sectional study consist of 49 elderly that were collected consecutively. Height, weight, waist circumference (WC), dietary intake, blood pressure (BP), fasting blood glucose and urine were obtained. Rank Spearman correlation test was used to examine the correlation of components of metabolic syndrome and dietary intake with urine pH. Mann-Whitney test was used to compare the urine pH of the metabolic syndrome group and the normal group. Chi-Square/fisher test was used to calculate prevalence ratio (PR) of metabolic syndrome components to low urine pH. Multivariate analysis was done by multiple linear regression.Results: The mean urine pH of the metabolic syndrome group was 6,06 and significantly lower than the normal group (6,50). WC was the only component of metabolic syndrome that related to urine pH (r=-0,325; p=0,023). Abdominal obesity significantly increases the risk of low urine pH (RP=1,6; p=0,023; CI=1,005-2,442). Urine pH was negatively associated with protein intake and proportion of protein on diet. In multivariate analysis, WC is the most significant factor that predicted urinary pH.Conclusion: Urine acidification is a characteristic of abdominal obesity and the metabolic syndrome. Protein intake and proportion of protein on diet contribute to urine pH.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bruna Guida ◽  
Mauro Cataldi ◽  
Immacolata Daniela Maresca ◽  
Roberta Germanò ◽  
Rossella Trio ◽  
...  

We evaluated dietary intake and nutritional-inflammation status in ninety-six renal transplant recipients, years after transplantation. Patients were classified as normoweight (NW), overweight (OW), and obese (OB), if their body mass index was between 18.5 and 24.9, 25.0 and 29.9, and ≥30 kg/m2, respectively. Food composition tables were used to estimate nutrient intakes. The values obtained were compared with those recommended in current nutritional guidelines. 52% of the patients were NW, 29% were OW, and 19% were OB. Total energy, fat, and dietary n-6 PUFAs intake was higher in OB than in NW. IL-6 and hs-CRP were higher in OB than in NW. The prevalence of multidrug regimen was higher in OB. In all patients, total energy, protein, saturated fatty acids, and sodium intake were higher than guideline recommendations. On the contrary, the intake of unsaturated and n-6 and n-3 polyunsaturated fatty acids and fiber was lower than recommended. In conclusion, the prevalence of obesity was high in our patients, and it was associated with inflammation and the assumption of multiple cardiovascular and antidiabetic drugs. Dietary intake did not meet nutritional recommendations in all patients, especially in obese ones, highlighting the need of a long-term nutritional support in renal transplant recipients.


2015 ◽  
Vol 77 (7) ◽  
pp. 865-869 ◽  
Author(s):  
Jun TAMURA ◽  
Takaharu ITAMI ◽  
Tomohito ISHIZUKA ◽  
Sho FUKUI ◽  
Kenjirou MIYOSHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document