scholarly journals Salvinia auriculata (giant salvinia).

Author(s):  
Julissa Rojas-Sandoval ◽  
Alison Mikulyuk

Abstract Salvinia auriculata is a floating aquatic fern that is often grown as an aquatic ornamental, but has escaped cultivation and become invasive in many regions worldwide. It is highly competitive and capable of extremely fast growth; high leaf and branch densities allow it to form continuous and large mats on the waters surface. It exhibits density-dependent morphological plasticity that increases its competitive potential. Under conditions of nutrient enrichment, it can form dense mats (>50 cm thick) that shade submersed aquatic plant species, impact fisheries and negatively affect recreational activities and transportation. Dense colonies can completely outcompete native flora, decrease biodiversity and contribute to habitat degradation. The species is listed as invasive in Chile, Cuba, Dominican Republic, Guyana, Taiwan, Zambia and Zimbabwe.

Weed Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Erika J. Haug ◽  
Khalied A. Ahmed ◽  
Travis W. Gannon ◽  
Rob J. Richardson

Abstract Additional active ingredients are needed for use in aquatic systems in order to respond to new threats or treatment scenarios, enhance selectivity, reduce use rates, and to mitigate the risk of herbicide-resistance. Florpyrauxifen-benzyl is a new synthetic auxin developed for use as an aquatic herbicide. A study was conducted at North Carolina State University, in which 10 µg L−1 of 25% radiolabeled florpyrauxifen-benzyl was applied to the isolated shoot tissue of ten different aquatic plant species in order to elucidate absorption and translocation patterns in these species. Extremely high levels of shoot absorption were observed for all species and uptake was rapid. Highest shoot absorptions were observed for crested floatingheart [Nymphoides cristata (Roxb.) Kuntze] (A192 =20 µg g−1), dioecious hydrilla [Hydrilla verticillata (L.f.) Royle] (A192 =25.3 µg g−1), variable watermilfoil (Myriophyllum heterophylum Michx.) (A192 =40.1 µg g−1) and Eurasian watermilfoil (Myriophyllum spicatum L.) (A192 =25.3 µg g−1). Evidence of translocation was observed in all rooted species tested with the greatest translocation observed in N. cristata (1.28 µg g-1 at 192 HAT). The results of this study add to the growing body of knowledge surrounding the behavior of this newly registered herbicide within aquatic plants.


Author(s):  
Elise Sipeniece ◽  
Inga Mišina ◽  
Ying Qian ◽  
Anna Grygier ◽  
Natalia Sobieszczańska ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 741
Author(s):  
Rocío Fernández-Zamudio ◽  
Pablo García-Murillo ◽  
Carmen Díaz-Paniagua

In temporary ponds, seed germination largely determines how well aquatic plant assemblages recover after dry periods. Some aquatic plants have terrestrial morphotypes that can produce seeds even in dry years. Here, we performed an experiment to compare germination patterns for seeds produced by aquatic and terrestrial morphotypes of Ranunculus peltatus subsp. saniculifolius over the course of five inundation events. During the first inundation event, percent germination was higher for terrestrial morphotype seeds (36.1%) than for aquatic morphotype seeds (6.1%). Seed germination peaked for both groups during the second inundation event (terrestrial morphotype: 47%; aquatic morphotype: 34%). Even after all five events, some viable seeds had not yet germinated (terrestrial morphotype: 0.6%; aquatic morphotype: 5%). We also compared germination patterns for the two morphotypes in Callitriche brutia: the percent germination was higher for terrestrial morphotype seeds (79.5%) than for aquatic morphotype seeds (41.9%). Both aquatic plant species use two complementary strategies to ensure population persistence despite the unpredictable conditions of temporary ponds. First, plants can produce seeds with different dormancy periods that germinate during different inundation periods. Second, plants can produce terrestrial morphotypes, which generate more seeds during dry periods, allowing for re-establishment when conditions are once again favorable.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hui Li ◽  
Xingyu Yang ◽  
Yue Zhang ◽  
Zhiyan Gao ◽  
Yuting Liang ◽  
...  

AbstractSacred lotus (Nelumbo nucifera, or lotus) is one of the most widely grown aquatic plant species with important uses, such as in water gardening and in vegetable and herbal medicine. A public genomic database of lotus would facilitate studies of lotus and other aquatic plant species. Here, we constructed an integrative database: the Nelumbo Genome Database (NGD, http://nelumbo.biocloud.net). This database is a collection of the most updated lotus genome assembly and contains information on both gene expression in different tissues and coexpression networks. In the NGD, we also integrated genetic variants and key traits from our 62 newly sequenced lotus cultivars and 26 previously reported cultivars, which are valuable for lotus germplasm studies. As applications including BLAST, BLAT, Primer, Annotation Search, Variant and Trait Search are deployed, users can perform sequence analyses and gene searches via the NGD. Overall, the valuable genomic resources provided in the NGD will facilitate future studies on population genetics and molecular breeding of lotus.


Phytotaxa ◽  
2018 ◽  
Vol 367 (3) ◽  
pp. 245 ◽  
Author(s):  
TIAGO D. M. BARBOSA ◽  
RAFAELA J. TRAD ◽  
MIKLOS M. BAJAY ◽  
MARIA I. ZUCCHI ◽  
MARIA DO CARMO E. DO AMARAL

Cabomba schwartzii was described by Rataj in 1977. The species discovered in the Brazilian Amazon was said to differ from other Cabomba species in having two sepals, two petals and a lobate petal base. According to the 1991 study of Ørgaard, C. schwartzii is similar to C. aquatica in other morphological characters (C. aquatica has flowers with three sepals and three petals) and since variation in number of floral parts is common in the genus, Ørgaard synonymized both species. After an analysis of C. schwartzii type material, other herbarium collections and location of four populations (two with C. schwartzii characteristics and two with C. aquatica characteristics), we conducted an integrated morphological and genetic study to evaluate whether or not C. schwartzii is a distinct species from C. aquatica. The results reveal the species to be distinct from each other and therefore C. schwartzii should be reestablished. The floral formula for C. schwartzii is K2 C2 A2+2 G1, versus K3 C3 A3+3 G2 for C. aquatica. A detailed species description and the geographical distribution of C. schwartzii are presented with a dichotomous key to distinguish both species, together with illustrations.


2015 ◽  
Vol 7 (2) ◽  
pp. 889-896 ◽  
Author(s):  
Shivakshi Jasrotia ◽  
Arun Kansal ◽  
Aradhana Mehra

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Rapheal Wangalwa ◽  
Eunice Apio Olet ◽  
Grace Kagoro-Rugunda ◽  
Casim Umba Tolo ◽  
Patrick E. Ogwang ◽  
...  

Citropsis articulata is a medicinal plant that is increasingly threatened by unsustainable methods of harvesting and habitat degradation. Owing to the fact that this plant species is highly utilized for herbal medicine and is currently restricted to a few forest reserves in Uganda, this has significant implications for ex situ conservation. Therefore, the aim of this study was to assess how physiographical factors influence the occurrence and distribution of C. articulata in the three forest reserves in Uganda, namely, Budongo, Mabira, and Kibale National Park. The study was carried out in 15 compartmental sites in each of the three forests. In each compartmental site, 4 plots of 60 m × 60 m were systematically established, and within each plot, 4 subplots each of size 20 m × 20 m were randomly setup. A total of 240 subplots were assessed for occurrence of Citropsis articulata in each forest. The results indicated a significant ( p < 0.05 ) variation in the density of C. articulata with the highest recorded in Kibale National Park. Citropsis articulata generally occurred at moderate altitudinal landscapes (overall elevation = 1200.0 ± 20.73 m) with soils that are moderately acidic (overall pH = 5.7 ± 0.10), low in salinity (overall salinity = 84.0 ± 3.84 mg/l), and moderate levels of macro- and micronutrients. Citropsis articulata was generally associated with plant communities dominated by canopy tree species of genera such as Chryosphyllum, Celtis, Markhamia, Cynometra, Lasiodiscus, Trilepisium, Funtumia, and Diospyros, thus suggesting that C. articulata is a shade-tolerant species. Establishing the ecological requirements of this plant species among other things informs the potential for ex situ production of this plant. This will not only provide alternative sources of plant harvest but also go a long way in relieving the current harvest pressures exerted on the conserved wild populations of this plant species.


2017 ◽  
Vol 4 (1) ◽  
pp. 148-160
Author(s):  
Arjun C.P ◽  
Anoop V.K ◽  
Tijo K.J ◽  
Anoopkumar T.K ◽  
Roshnath R

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetumpolystachyon, Pteridium aquilinum, Quisqualis indica and Sphagneticola trilobata were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population bydeclining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.


Author(s):  
K. L. Savitskaya ◽  
М. A. Dzhus

There is a review of floral studies of the water bodies in Minsk Region and National Park “Belovezhskaya Pushcha”. 75 new locations of 20 rare aquatic and riverside plant species coming at the water and 1 hybrid were found. 7 of these species are listed in the Red Book of the Republic of Belarus, 5 species are included into the category of Least Concern and Data Deficient. Potamogeton berchtoldii Fieber, Utricularia minor L., Potamogeton acutifolius Link, P. nodosus Poir., Salvinia natans (L.) All. are reported for the first time from National Park «Belovezhskaya Pushcha». The spreading of Berula erecta (Huds.) Coville on the territory of National Park is considered in detail. New locations of Nuphar pumila (Timm) DC., Ranunculus kauffmannii Clerc., Najas major All., Berula erecta, Glyceria lithuanica (Gorski) Gorski, Conioselinum tatari­ cum Hoffm. in Minsk Region, which were not included in 4th edition of the Red Book, have been described. A brief description of habitat environmental conditions is given for the revealed species of aquatic plants, and their phytocoenotic confinement is also pointed out. New information on the locations of protected aquatic plant species should be used to monitor their populations and prepare the documents of protection.


Sign in / Sign up

Export Citation Format

Share Document