Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae

2006 ◽  
Vol 16 (1) ◽  
pp. 29-35 ◽  
Author(s):  
D.J. Merritt ◽  
M. Kristiansen ◽  
G.R. Flematti ◽  
S.R. Turner ◽  
E.L. Ghisalberti ◽  
...  

This study investigated the effects of 3-methyl-2H-furo[2,3-c]pyran-2-one, a germination active butenolide present in plant-derived smoke, gibberellic acid and smoke water on seeds of AustralianAsteraceaeexposed to different light regimes. Seeds of all species required light, with maximum germination occurring under white light, or light dominated by 640 nm. Compared to untreated seeds, butenolide increased germination ofAngianthus tomentosus,Gnephosis tenuissima,Myriocephalus guerinae,Podolepis canescensandRhodanthe citrinaat suboptimal light wavelengths and in the dark to a level equal to, or greater than, smoke water. Germination ofErymophyllum glossanthusandGnephosis aciculariswas not promoted by butenolide or smoke water under any light regime. The action of gibberellic acid was compared to that of butenolide for three species (Angianthus tomentosus,Myriocephalus guerinaeandPodolepis canescens), and both compounds were found to stimulate germination. This study provides evidence that butenolide can act in a similar fashion as gibberellic acid in promoting seed germination of light-sensitive seeds. The ecological significance of these findings is discussed.

2007 ◽  
Vol 59 (3) ◽  
pp. 227-231 ◽  
Author(s):  
S. Zivkovic ◽  
M. Devic ◽  
B. Filipovic ◽  
Z. Giba ◽  
D. Grubisic

The influence of high NaCl concentrations on seed germination in both light and darkness was examined in the species Centaurium pulchellum, C. erythraea, C. littorale, C. spicatum, and C. tenuiflorum. Salt tolerance was found to depend on the life history of the seeds. To be specific, seeds of all five species failed to complete germination when exposed to continuous white light if kept all the time in the presence of 100-200 mM and greater NaCl concentrations. However, when after two weeks NaCl was rinsed from the seeds and the seeds were left in distilled water under white light for an additional two weeks, all species completed germination to a certain extent. The percent of germination not only depended on NaCl concentration in the prior medium, but was also species specific. Thus, seeds of C. pulchellum, C. erythraea, and C. littorale completed germination well almost irrespective of the salt concentration previously experienced. On the other hand, seeds of C. tenuiflorum completed germination poorly if NaCl concentrations in the prior media were greater than 200 mM. When seeds after washing were transferred to darkness for an additional 14 days, they failed to complete germination if previously imbibed on media containing NaCl concentrations greater than 400 mM. However, the seeds of all species, even if previously imbibed at 800 mM NaCl, could be induced to complete germination in darkness by 1 mM gibberellic acid. .


2018 ◽  
Vol 48 (8) ◽  
Author(s):  
Magnólia Martins Alves ◽  
Edna Ursulino Alves ◽  
Luciana Rodrigues de Araújo ◽  
Maria de Lourdes dos Santos Lima ◽  
Marina Matias Ursulino

ABSTRACT: Caesalpinia pulcherrima is a Fabaceae family species from Central America, which has a small size and is widely used as a living fence in the urban afforestation for streets, parks, and gardens. Based on this importance, the aim of this research was to study the influence of light and temperature on the germination of C. pulcherrima seeds. The study was carried out at the Laboratory of Seed Analysis of the Center of Agricultural Sciences of the Universidade Federal da Paraíba, Areia, PB, Brazil. The experimental design was completely randomized, comprising a 3x5 (three temperatures and five light regimes) factorial scheme with four replicates containing 25 seeds each. Germination and vigor of seeds were evaluated under temperatures of 25°C and 30ºC constant and 20-30ºC alternated in different light regimes: white, green, red-distant, red, and absence of light. Variables analyzed were: germination, first germination count, germination speed index, root length, shoot length, and the ratio of dry mass of root/shoot of the seedlings. Seeds of C. pulcherrima germinate in the presence and absence of light, being a neutral photoblastic. Recommendation to test the vigor of these seeds is the temperature of 30°C in the white light regime.


1997 ◽  
Vol 24 (3) ◽  
pp. 389 ◽  
Author(s):  
Julie A. Plummer ◽  
Catherine J. McChesney ◽  
David T. Bell

The effect of light on gibberellic acid (GA) metabolism was investigated in Asteraceae seeds. White light (80 mmol m-2 s-1 PAR) increased seed germination in Craspedia sp., Erymophyllum ramosum and Rhodanthe chlorocephala subsp. splendida compared with darkness. In these taxa, red light (R, 640 nm, 8 mmol m-2 s-1) stimulated and far red light (FR, 720 nm, 4 mmol m-2 s-1) inhibited germination, indicating the involvement of phytochrome. Paclobutrazol, a GA biosynthesis inhibitor, reduced light-stimulated germination and this was overcome by exogenous GA3. GA3 and GA1 promoted germination in the dark, but GA19 and GA20, which are precursors to GA1, generally did not. GAs were applied to paclobutrazol-treated seeds which were incubated under either R or FR. Very few paclobutrazol-treated seeds germinated without GAs under FR, and exposure to R only marginally improved germination. Application of GA19 or GA20 to paclobutrazol-treated seeds increased germination in Rhodanthe chlorocephala subsp. splendida under R, with no germination under FR. This trend was observed in Craspedia sp., but not in Erymophyllum ramosum or Rhodanthe floribunda. CGA 163′935, a 3b-hydroxylation inhibitor, and R and FR were used to investigate phytochrome-stimulated conversion of GA19 and GA20 to GA1. It could not be shown that R was required for 3b-hydroxylation in light stimulated germination of these species.


2014 ◽  
Vol 24 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Satendra Singh ◽  
Manoj G. Kulkarni ◽  
Johannes Van Staden

AbstractSmoke-water (SW), karrikinolide (KAR1) and vermicompost leachate (VCL) have been reported to possess gibberellic acid-like activity. The effects of these plant growth-promoting substances (PGPSs) on biochemical changes occurring during seed germination of Phaseolus vulgaris were assessed. Seeds were incubated/germinated under dark conditions in water (control) or with different concentrations of SW, KAR1, VCL and gibberellic acid (GA3) for 7 d. The maximum seedling fresh weight (1.863 g) was recorded for the SW (1:750 v/v) treatment. The longest seedling axes (9.9 cm) and the highest number of adventitious roots (16.3) were recorded for VCL-treated seedlings (1:10 and 1:5 v/v, respectively). Analysis of two important hydrolytic enzymes, acid phosphatase and alpha-amylase, showed maximum activity [1856 nkat mg− 1 and 3.225 mg min− 1(g FW)− 1, respectively] in the seeds incubated with 10− 8M KAR1. In all the treated seedlings, proline content was significantly reduced [43.67 μg (g FW)− 1; VCL (1:20 v/v)] in comparison to the control [87 μg (g FW)− 1] but there was an increase in amino acids with some concentrations of PGPSs. The tested PGPSs significantly influenced various biochemical parameters that play a significant role in seed germination and plant growth. This study indicates that PGPSs may act via stress-relieving biochemical pathways during seed germination.


2009 ◽  
Vol 37 (1) ◽  
pp. 33-41 ◽  
Author(s):  
B. Pascual ◽  
A. San Bautista ◽  
N. Pascual Seva ◽  
R. García Molina ◽  
S. López-Galarza ◽  
...  

2016 ◽  
Vol 38 (4) ◽  
pp. 513 ◽  
Author(s):  
Emanoela Pereira de Paiva ◽  
Salvador Barros Torres ◽  
Francisco Vanies da Silva Sá ◽  
Narjara Walessa Nogueira ◽  
Rômulo Magno Oliveira de Freitas ◽  
...  

2008 ◽  
Vol 8 (2) ◽  
pp. 63-68 ◽  
Author(s):  
Edson Simão ◽  
Massanori Takaki

The effect of light and temperature on Tibouchina mutabilis seed germination was analyzed by isothermic incubations in the range of 10 to 40 °C, with 5 °C intervals under both continuous white light (32.85 µmolm-2s-1) and darkness and alternating temperatures (15-20; 15-25; 15-30; 15-35; 20-25; 20-30; 20-35; 25-30; 25-35 and 30-35 °C) under both photoperiod of 12 hours and continuous darkness. The seeds of T. mutabilis need light to trigger the germination and no germination was observed in darkness. The range of optimum temperatures for germination was between 25 to 30 °C and the 20-25 °C alternating temperatures. These results indicate that T. mutabilis behaves as a pioneer species and daily alternating temperatures did not change the light sensitivity of seeds.


2016 ◽  
Vol 76 (2) ◽  
pp. 367-373 ◽  
Author(s):  
A. B. Lone ◽  
R. C. Colombo ◽  
B. L. G. Andrade ◽  
L. S. A. Takahashi ◽  
R. T. Faria

Abstract The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable.


Botany ◽  
2019 ◽  
Vol 97 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Attiat Elnaggar ◽  
Ali El-Keblawy ◽  
Kareem A. Mosa ◽  
Teresa Navarro

The effects of temperature, light, salinity, and drought on germination of halophytes have been extensively studied. However, few studies have focused on the germination of plants that grow well in both saline and nonsaline habitats (i.e., habitat-indifferent halophytes). Here, we assess the impacts of population origin, temperature, and light on drought tolerance, as simulated with polyethylene glycol (PEG), during germination of Salsola drummondii Ulbr., a habitat-indifferent halophyte from the arid Arabian deserts. Seeds were collected from both saline and nonsaline habitats and germinated at six concentrations of PEG at three temperatures and two light regimes. An increase in the concentration of PEG resulted in a significant reduction in seed germination, especially at higher temperatures. Seeds from the nonsaline habitat attained significantly greater germination efficiency at concentrations of PEG up to –1.2 MPa, but there was no difference in germination of seeds between the two habitats at concentrations of –1.5 MPa. Seeds from the saline habitat germinated significantly faster at higher concentrations of PEG. Germination was significantly higher in darkness than in light at –1.5 MPa at the lower temperatures, but the opposite was true for the higher temperatures. Seeds from saline habitats had higher levels of dormancy and faster rates of germination at higher concentrations of PEG because of their adaptation to low osmotic potentials.


Sign in / Sign up

Export Citation Format

Share Document