climate regime shift
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 9 (11) ◽  
pp. 1225
Author(s):  
Hae-Kun Jung ◽  
S. M. Mustafizur Rahman ◽  
Hee-Chan Choi ◽  
Joo-Myun Park ◽  
Chung-Il Lee

The western part of East/Japan Sea (WES) is an important area for understanding climate change processes and interactions between atmospheric and oceanic conditions. We analyzed the trends in recent oceanic conditions in the WES after the recent climate regime shift (CRS) that occurred in the late 1990s in the North Pacific. We explored the most important climate factors that affect oceanic conditions and determined their responses to changes in climate change. In the CRS that occurred in the late 1980s, changes in oceanic conditions in the WES were influenced by intensity changes in climate factors, and, in the late 1990s, it was by spatial changes in climate factors. The latitudinal shift of the Aleutian low (AL) pressure influences recent changes in oceanic and atmospheric conditions in the WES. The intensity of the Kuroshio Current and the sea level pressure in the Kuroshio extension region associated with the latitudinal shift of the AL pressure affects the volume of transport of the warm and saline water mass that flows into the WES and its atmospheric conditions. In addition, the fluctuations in the oceanic conditions of the WES affect various regions and depth layers differently, and these variations are evident even within the WES.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2694
Author(s):  
Külli Kangur ◽  
Kai Ginter ◽  
Andu Kangur ◽  
Peeter Kangur ◽  
Tõnu Möls

The population dynamics of fish in northern lakes is strongly influenced by climatic factors. In this study, we investigated whether there is a link between the late 1980s climate regime shift in Europe and the collapse of vendace (Coregonus albula) population at the same time in Lake Peipsi. Until the end of the 1980s, vendace was very abundant in the lake, but then its catches sharply declined. This decline inspired investigations into the extreme weather events preceding the vendace collapse using data on daily water temperatures and ice phenology together with commercial fishery statistics since 1931 and test catch data since 1986. We identified using advanced statistical methods that the hot summer of 1988, which was accompanied by a severe cyanobacterial bloom and extensive fish kill, and the subsequent non-permanent ice cover and early ice-offs in 1989 and 1990 in Lake Peipsi were the main reasons for the disappearance of vendace from catches in 1991. Moreover, a negative correlation appeared between catches of the predatory pikeperch (Sander lucioperca) and vendace. Predation pressure as well as fish habitat degradation caused by lake eutrophication may contribute to the instability of the vendace population too. Our study showed that extreme weather events such as heat waves in summer and non-permanent ice-cover in winter in consecutive years may have long-lasting harmful effects on the population abundance of cool-water fish species such as vendace whose eggs usually develop under an ice cover in north-temperate lakes.


2020 ◽  
Vol 26 (10) ◽  
pp. 5874-5885 ◽  
Author(s):  
Xiyan Xu ◽  
Gensuo Jia ◽  
Xiaoyan Zhang ◽  
William J. Riley ◽  
Ying Xue

2018 ◽  
Vol 31 (19) ◽  
pp. 8163-8179 ◽  
Author(s):  
Haikun Zhao ◽  
Xingyi Duan ◽  
G. B. Raga ◽  
Philip J. Klotzbach

A significant increase in the proportion of tropical cyclones undergoing rapid intensification at least once during their lifetime (RITCs) over the western North Pacific (WNP) is observed since 1998 when an abrupt climate regime shift occurred. Changes of large-scale atmospheric and oceanic conditions affecting TC activity are compared between two subperiods: one before and one since 1998. Results suggest that both a significant decrease in the number of TCs and a nearly unchanged number of RITCs since 1998 caused a significant increase in the frequency of RITCs. The decrease in TC numbers is likely driven by considerably increased vertical wind shear and decreased low-level vorticity. In contrast, the unchanged RITC counts and thus increased ratio of RITCs during the recent decades are largely attributed to the dominance of a more conducive ocean environment with increased TC heat potential and warmer sea surface temperature anomalies. These associated decadal changes are closely associated with the recent climate regime shift. During the recent decades with a mega–La Niña–like pattern, stronger easterly trade winds have caused increased vertical wind shear and a weakened monsoon trough, thus hampering TC formation ability over the WNP. In addition, a steeper thermocline slope that hampered the eastward migration of warm water along the equatorial Pacific has generated a more favorable thermodynamic environment supporting TC rapid intensification over the WNP.


2017 ◽  
Vol 142 (3-4) ◽  
pp. 505-520 ◽  
Author(s):  
R. Iestyn Woolway ◽  
Martin T. Dokulil ◽  
Wlodzimierz Marszelewski ◽  
Martin Schmid ◽  
Damien Bouffard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document