scholarly journals Determination of the chromosome number and genome size of Garcinia mangostana L. via cytogenetics, flow cytometry and k-mer analyses

Caryologia ◽  
2017 ◽  
Vol 71 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Mohd Razik Midin ◽  
Mohd Shukor Nordin ◽  
Maria Madon ◽  
Mohd Nazre Saleh ◽  
Hoe-Han Goh ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
pp. 14-16
Author(s):  
Raden Muhamad Imaduddin Yumni ◽  
Mohd Fauzihan Karim ◽  
Mohd Razik Midin

The family of Cucurbitaceae consists of species with economical and nutritional value. Morphologically, there are only few differences between Cucumis species. The interspecific and intraspecific variation in the genome size of the Cucumis species are not discovered yet. Due to this, this study aims to determine the genome size of C. sativus, C. melo inodorus and C. melo cantalupensis using flow cytometry (FCM) method. Nuclei suspension of selected Cucumis species were extracted using LBO1 lysis buffer by manual chopping technique and stained by propidium iodide priot to FCM analysis. Genome size of C. sativus, C. melo inodorus (Honeydew) and C. melo cantalupensis (Rockmelon) were determined by using Glycine max (Soybean) as an external reference standard (2C = 2.5 pg). This study found that the genome size of C. sativus, C. melo inodorus and C. melo cantalupensis estimated to be 2.83 pg, 3.00 pg and 3.47 pg respectively. The genome size data obtained from this study can be used in future genome studies as well as species characterization.


CYTOLOGIA ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Hidenori Tanaka ◽  
Awatsaya Chotekajorn ◽  
Sayumi Kai ◽  
Genki Ishigaki ◽  
Masatsugu Hashiguchi ◽  
...  

Plant Omics ◽  
2021 ◽  
pp. 50-56
Author(s):  
Dessireé Patricia Zerpa-Catanho ◽  
Tahira Jatt ◽  
Ray Ming

Jarilla chocola is an herbaceous plant species that belongs to the Jarilla genus and the Caricaceae family. No information on chromosome number or genome size has been reported for J. chocola that confirms the occurrence of dysploidy events and explore the existence of heteromorphic sex chromosomes. Therefore, the total number of chromosomes of this species was determined by karyotyping and counting the number of chromosomes observed, and the genome size of female and male plants was estimated separately by flow cytometry. Results showed that J. chocola has eight pairs of chromosomes (2n = 2x = 16), and its chromosomes are classified as metacentric for five pairs, submetacentric for two pairs and telocentric for one pair. The nuclear DNA content (1C-value) in picograms and diploid genome size was estimated separately from female and male plants using two species as the standards, Phaseolus vulgaris (1C = 0.60 pg) and Carica papaya (1C = 0.325 pg), to look for the possible existence of heteromorphic sex chromosomes. C. papaya proved to be a better standard for the determination of J. chocola DNA content and diploid genome size. No significant difference on the DNA content was observed between female (1C = 1.02 ± 0.003 pg) and male (1C = 1.02 ± 0.008 pg) plants. The estimated genome size of J. chocola per haploid genome in base pairs was calculated from the obtained C-values. Results showed an estimated genome size per haploid genome of 1018.44 ± 3.07 Mb and 1022.08 ± 7.76 Mb for female and male plants, respectively. Due to the observed chromosome number and genome size, only the occurrence of one of two previously reported dysploidy events in Jarilla could be confirmed for J. chocola and no evidence of heteromorphic sex chromosomes was found. These results provide fundamental information of the J. chocola genome and will expedite investigation of sex chromosomes and genome evolution in this species, the Jarilla genus and the Caricaceae family


Genome ◽  
2009 ◽  
Vol 52 (10) ◽  
pp. 829-838 ◽  
Author(s):  
Angelo Dewitte ◽  
Leen Leus ◽  
Tom Eeckhaut ◽  
Ives Vanstechelman ◽  
Johan Van Huylenbroeck ◽  
...  

The genome sizes of a Begonia collection comprising 37 species and 23 hybrids of African, Asiatic, Middle American, and South American origin were screened using flow cytometry. Within the collection, 1C values varied between 0.23 and 1.46 pg DNA. Genome sizes were, in most cases, not positively correlated with chromosome number, but with pollen size. A 12-fold difference in mean chromosome size was found between the genotypes with the largest and smallest chromosomes. In general, chromosomes from South American genotypes were smaller than chromosomes of African, Asian, or Middle American genotypes, except for B. boliviensis and B. pearcei. Cytological chromosome studies in different genotypes showed variable chromosome numbers, length, width, and total chromosome volume, which confirmed the diversity in genome size. Large secondary constrictions were present in several investigated genotypes. These data show that chromosome number and structure exhibit a great deal of variation within the genus Begonia, and likely help to explain the large number of taxa found within the genus.


2018 ◽  
Vol 143 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Supriyo Basak ◽  
Guangyan Wang ◽  
Xudong Sun ◽  
Yongping Yang

Brassica rapa var. rapa (turnip) is considered a main source of food for the inhabitants of the Qinghai-Tibetan Plateau (QTP) and its adjacent highlands when other crops are scarce. The QTP ranges from lat. 25.59°N to 39.49°N and from long. 73.29°E to 104.40°E, whereas the Yunnan Plateau ranges from lat. 20.00°N to 29.16°N and from long. 96.00°E to 110.19°E. A comparison between the turnip landraces of two different plateau environments can provide a mechanistic insight into plant adaptation in highlands. The aim of this investigation was to understand the patterns in variation in genome size (GS) between the turnip landraces of two plateau environments. We used a well-established protocol to count chromosome number and performed propidium iodide flow cytometry to measure GS. No polyploidy was detected among the turnip landraces tested, and 15.5% variation in GS was observed between the landraces. No consistent pattern pertaining to GS variation emerged after the environmental variables were considered. Thus, we propose that such pattern may reflect the indirect effect of selection, random process, genetic drift, or some other factors on GS through interaction of life-form and phenotypic traits.


HortScience ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 567-570 ◽  
Author(s):  
Ryan N. Contreras ◽  
John M. Ruter

Genome size estimates and chromosome number information can be useful for studying the evolution or taxonomy of a group and also can be useful for plant breeders in predicting cross-compatibility. Callicarpa L. is a group of ≈140 species with nearly worldwide distribution. There are no estimates of genome size in the literature and the information on chromosome numbers is limited. Genome size estimates based on flow cytometry are reported here for 16 accessions of Callicarpa comprising 14 species in addition to chromosome counts on six species. Chromosome counts were conducted by staining meristematic cells of roots tips using modified carbol fuchsin. Holoploid genome size estimates ranged from 1.34 pg to 3.48 pg with a mean of 1.74 pg. Two tetraploids (2n = 4x = 68; C. salicifolia P'ei & W. Z. Fang and C. macrophylla Vahl GEN09-0081) were identified based on holoploid genome size and confirmed by chromosome counts. There was little variation among species for monoploid genome size. 1Cx-values ranged from 0.67 pg to 0.88 pg with a mean of 0.77 pg. Chromosome counts for six species revealed a base chromosome number of x = 17. Callicarpa chejuensis Y. H. Chung & H. Kim, C. japonica Thunb. ‘Leucocarpa’, C. longissima Merr., and C. rubella Lindl. were confirmed as diploids (2n = 2x = 34). Cytology supported flow cytometry data that C. salicifolia and C. macrophylla GEN09-0081 were tetraploids. The two accessions of C. macrophylla included in the study were found to be of different ploidy levels. The presence of two ploidy levels among and within species indicates that polyploidization events have occurred in the genus.


2020 ◽  
Vol 4 (2) ◽  
pp. 72-75
Author(s):  
Mohd Razik Midin ◽  
Muhammad Irfan Fikri ◽  
Siti Sarah Zailani

AbstractChristia vespertilionis (butterfly wing plant) is an ornamental plant originated from South East Asia with reported usage in traditional medicine practice and potential as an anticancer and antitumor. This research aims to estimate the genome size of C. vespertilionis via flow cytometry (FCM) method. The research was conducted with the optimisation of nuclear suspension preparation followed by the genome size estimation. Two chopping techniques [manual chopping (MC) and BDTM Medimachine (MM)] and two lysis buffers (Otto and LBO1) were tested. Otto buffer with manual chopping was found to be the most suitable method, generated fine DNA peak with minimum debris background, and coefficient of variation (CV) value less than 3%. Five replicates of the FCM analysis were made for the genome size determination. The estimated genome size of C. vespertilionis was found to be 3.22 pg by using Glycine max cv. Polanka (2C=2.5pg) as an external reference standard. Further comparison with other Christia species was not possible due to the lack of data on genome size. The genome size data of C. vespertilionis can be useful for future morphology and genetics studies of Christia species.


3 Biotech ◽  
2019 ◽  
Vol 9 (12) ◽  
Author(s):  
Tahira Jatt ◽  
Moon-Sub Lee ◽  
A. Lane Rayburn ◽  
Mushtaque Ahmed Jatoi ◽  
Abdul Aziz Mirani

Sign in / Sign up

Export Citation Format

Share Document