Acta Chemica Malaysia
Latest Publications


TOTAL DOCUMENTS

48
(FIVE YEARS 33)

H-INDEX

2
(FIVE YEARS 2)

Published By De Gruyter Open Sp. Z O.O.

2576-6724, 2576-6732

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edith A. Enemose ◽  
Jerome S. Nworu ◽  
Onunkwo Innocent ◽  
Wisdom E. Morka

Abstract As part of the current research for more effective antimalarial drug, Cu (II) complex of sulphamethazine with 1,10 phenanthroline was synthesized. The novel complex was characterized by Elemental analysis, FT-IR and electronic spectroscopy. The novel complex is insoluble in water, which is an indication of covalent and non- electrolyte character. The elemental analysis result of the complex correspond with the proposed formula [Cu(SUF)(phen)(SCN)2]. The electronic spectrum of sulfamethazine and 1, 10- phen showed absorption bands at 212 nm (47169 cm−1) and 306 nm (32679 cm–1). These bands were assigned to the n – δ* and π – δ* transitions. The infrared bands were seen at 3443 – 3344 cm −1which were attributed to the presence of v(NH2), v(NH) and v (OH) vibrations experience bathochromic shift in the metal complex. The parent ligands acted as a bidentate chelating agent showing coordination through the pyridine nitrogen and the nitrogen of the NH moiety in this case.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Huda Mohd Noor ◽  
Muhammad Abbas Ahmad Zaini ◽  
Mohd Azizi Che Yunus

Abstract Adsorbents were derived from banana peel through chemical treatment using phosphoric acid, potassium hydroxide, and sodium hydroxide to adsorb methylene blue from water. The adsorption of methylene blue was performed at varying concentrations and contact times. The equilibrium data fitted well with Langmuir equation, with a maximum monolayer adsorption capacity of 99.28 mg/g (28%). Phosphoric acid-treated adsorbent exhibits a greater capacity despite a lower affinity than the other adsorbents. A two-stage batch adsorber model was developed to optimize the adsorbent dosage for performance evaluation. Banana peel is a promising resource of adsorbent for wastewater treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prabal Barua ◽  
Syed Hafizur Rahman ◽  
Maitri Barua

Abstract Coastal area of Bangladesh is one of the significant ecologically productive areas and full of rich biodiversity that includes variety of species that are endemic to this region. The Shipbreaking activity has turned out to be more significant within the economic situation of the poverty-stricken Bangladesh. The study vicinity was alienated into the Shipbreaking zone and control site for proportional investigation. The study was administered to assess the changing pattern of the concentration of trace metals in soil Soil samples of the study areas and its impact on fish diversity of the ship breaking area in Bangladesh over the 40 years. From the finding of the study, it had been found that the concentration of the heavy metals found within the ship breaking area followed a pattern within the following fashion Fe>Pb>Cr>Mn>Zn>Ni>Cu>Cd>Hg. The finding of this heavy metal analysis of sediments demonstrated that there has been in an increment of two to eight times of selected heavy metals from the finding of 1980 to 2019. The study compared with the two relatively pristine or less impacted (undisturbed) areas, that served because of the reference zone. These studies also found that about 30 species of fishes became irregular or are threatened with extinction than they were 40 years ago.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Eze Nkechinyere Olivia ◽  
Ejimofor Samuel Adimchinobi ◽  
Onuegbu Theresa Uzoma

AbstractIn view of the global need to curb the effect of contaminants in waste water on our environment, the adsorption potentials of modified carbon from bambaranut (Vigna subterranean) shell was investigated for its efficiency in the removal of methylene blue from waste water. The adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) determination and Scanning Electron Microscopy (SEM), as well as other standard laboratory procedures. The prepared material was used for the uptake of MB from aqueous solution in a batch process, using UV spectrophotometer Model 752 at 620nm to analyze for the residual dye concentration. The effect of operational parameters such as contact time, adsorbent dosage, initial dye concentration and pH were analyzed to determine the factors controlling the rate of adsorption. Results from the study showed that the active carbon prepared was a porous material, with surface area of 193 m2/g, average pore size of about 10.98nm, and pore volume of 0.530cm3/g. With increase in initial dye concentration from 15mg/l to 75mg/l, a decrease in percent adsorption from 95.4% to 72.19% was observed. Increase in adsorbent dosage (from 0.1g to 0.5g), contact time (from 5 min to 40 min) and pH from 2 to 10 resulted in increase in percent adsorption from 84.03% to 98.83%, 54.24% to 84% and 48.17% to 84.03% respectively. About 98.83% removal of MB dye was achieved after 20 min, at pH of 6, temperature of 27±2oC, 0.5g weight of adsorbent and initial concentration of 60mg/l of 50ml MB dye solution. Langmuir isotherm best fits the equilibrium adsorption data with R2 = 0.996; the adsorption intensity obtained from Freundlich model (n>1) and the energy of adsorption obtained from the D-R model (< 8kJ/mol) suggested that physisorption dominates the adsorption of methylene blue onto the prepared activated carbon. Adsorption kinetic data was best described using Pseudo second order kinetic model (R2 = 0.996), giving equilibrium rate constant (k2) of 7690g mg-1 min-1. The characteristic results showed that bambaranut shell can be employed as an alternative to commercial adsorbents in the removal of methylene blue dye from aqueous solutions and waste water.


2020 ◽  
Vol 4 (2) ◽  
pp. 76-85
Author(s):  
Abdelmalik M. Shakorfow ◽  
Abdulaziz. H. Mohamed

AbstractSeveral techniques, in which different homogenous catalysts and procedures, that are in use for transesterification of a vegetable oil or an animal fat have been successful in synthesizing biodiesel, although with some certain limitations. For such a purpose, among the catalysts employed are acidic as well as basic catalysts. It has been found that acidic catalysts can be tolerant with a high content of free fatty acids found in those low value feedstock oils/fats to be transesterified, although some sort of pretreatment by means of esterification might be required in order to synthesize biodiesel. Moreover, with employing homogenous acidic catalysts, it seems that biodiesel purification procedures are simplified; thus, reducing synthesis cost. In fact, these features of homogenous acidic catalysts render them advantageous over basic ones. With basic homogenous catalysts this; however, has not been possible due to the development of saponification reaction. To effectively perform, such catalysts require that the content of free fatty acids in the feedstock oil/fat is minimal. This requirement is also applicable to the moisture level in the feedstock. In terms of corrosive effects; nevertheless, acidic catalysts are disadvantageous compared to basic ones.


2020 ◽  
Vol 4 (2) ◽  
pp. 40-44
Author(s):  
Muhammad Ali ◽  
Qura Tul Ain ◽  
Ji HuanHe

AbstractWorld health organization (WHO) data shows that air pollution kills an estimated seven million people worldwide every year. A nanofiber based biodegradable facemask can keep breath from smoke and other particles suspended in the air. In this study, we propose branched polymeric nanofibers as a biodegradable material for air filters and facemasks. Fibers have been elecrospun using double bubble electrospinning technique. Biodegradable polymers, PVA and PVP were used in our experiment. Two tubes, each filled with one of the polymers, were supplied with air from the bottom to form bubbles of polymer solutions. DC 35-40 kV was used to deposit the fibers on an aluminum foil. Results show that the combination of polymers under specific conditions produced branched fibers with average nanofibers diameter of 495nm. FT-IR results indicate the new trends in the graph of composite nanofibers.


2020 ◽  
Vol 4 (2) ◽  
pp. 72-75
Author(s):  
Mohd Razik Midin ◽  
Muhammad Irfan Fikri ◽  
Siti Sarah Zailani

AbstractChristia vespertilionis (butterfly wing plant) is an ornamental plant originated from South East Asia with reported usage in traditional medicine practice and potential as an anticancer and antitumor. This research aims to estimate the genome size of C. vespertilionis via flow cytometry (FCM) method. The research was conducted with the optimisation of nuclear suspension preparation followed by the genome size estimation. Two chopping techniques [manual chopping (MC) and BDTM Medimachine (MM)] and two lysis buffers (Otto and LBO1) were tested. Otto buffer with manual chopping was found to be the most suitable method, generated fine DNA peak with minimum debris background, and coefficient of variation (CV) value less than 3%. Five replicates of the FCM analysis were made for the genome size determination. The estimated genome size of C. vespertilionis was found to be 3.22 pg by using Glycine max cv. Polanka (2C=2.5pg) as an external reference standard. Further comparison with other Christia species was not possible due to the lack of data on genome size. The genome size data of C. vespertilionis can be useful for future morphology and genetics studies of Christia species.


2020 ◽  
Vol 4 (2) ◽  
pp. 55-57
Author(s):  
Chinyere B. C. Ikpa ◽  
Samuel O. Onoja ◽  
Anastasia O. Okwaraji

AbstractThis study aims to synthesize hybrid compounds “via” the coupling of sulphonamide and benzothiazole into one structure that may have improved antibacterial property. The N-(biphenyl-4-yl) thiourea (1) used for the synthesis of the targeted sulphonamides was obtained by reacting diphenylamine and ammonium thiocyanate at room temperature. Cyclization of N-(biphenyl-4-yl)thiourea gave 2-amino-6-phenylbenzothiazole (2) which reacted with benzenesulphonyl chloride and para-toulene sulphonyl chloride to give the targeted sulphonamides (3a & 3b). The synthesized compounds were characterised using melting point, infra-red spectroscopy, nuclear magnetic resonance and elemental analysis. Anti-bacterial screening of the synthesised compounds indicated that all the compounds showed anti-bacterial properties, except 2-amino-6-phenylbenzothiazole that did not show any activity on Escherichia coli.


2020 ◽  
Vol 4 (2) ◽  
pp. 66-71
Author(s):  
Redempta S. Kalinda ◽  
Naomi B. Rioba

AbstractFall armyworm (Spodoptera frugiperda, J.E. Smith) is a pest with devasting effects on maize. A laboratory biassay was conducted to analyse the phytochemicals and determine the efficacy of M. spicata and R. officinalis extracts on FAW. Treatments were laid out in a Completely Randomized Design (CRD) with 3 replications. The factors included solvent [Methanol (Me), dichloromethane (DCM), distilled water (Di)] and the plant species (M. spicata and R. officinalis). Coragen SC 200 (Co) and Distilled water (Di) were the positive and negative controls, respectively. FAW rearing, plant extract preparation and phytochemical screening were done using standard procedure. Data collection and analysis was done using standard procedures. The extract yield was highest for R. officinalis regardless of the solvent used. Me-R. officinalis and Di-M. spicata extracts yielded the highest. Saponins, glycosides, alkaloid, flavonoids and tannins. Flavonoid contents were 7.9036 mg/mL and 6.0073 ± 0.6117 mg/mL in methanolic extract of M. spicata and R. officinalis, respectively. M. spicatha and R. officinalis extracts caused 100% mortality to 3rd instar larvae. Based on the findings, both M. spicata and R. officinalis have several secondary metabolites that confer insecticidal activity of the plants against FAW, hence should be evaluated under field conditions.


2020 ◽  
Vol 4 (2) ◽  
pp. 58-65
Author(s):  
Ovuru Cyril ◽  
Leizou ◽  
Kaywood Elijah ◽  
Muhammad Aqeel Ashraf

AbstractThe aim of this study was to evaluate the polycyclic aromatic hydrocarbons load in soils of Ogale community, Rivers State, Nigeria and as well delineate the lateral and vertical extensions of the soils and groundwater. Geo-electric characterization of the soils and groundwater, using Electrical Resistivity methods (vertical electrical sounding, VES by Abem Terrameter and Gas chromatograph - Flame Ionization Detector (GC-FID) for finger-print was employed. The interpreted VES results revealed four geo-electric subsurface layers. The first layer which has a resistivity value of 60Ωm and a thickness of 2.0M was interpreted as top soil. Underlying the first layer is the second layer which had a resistivity value of 122Ωm with a thickness of 3m, interpreted as lateritic sand. The third layer had a resistivity value of 750Ωm and a thickness of 9.0m, and is interpreted as coarse sand. The fourth layer which had a resistivity value of 1255Ωm and a thickness of 49m is interpreted as very coarse sand. Borehole one was used as control and it is 1.85km away from the Resistivity sampling points. The results revealed that the presence of C10-C40 hydrocarbon which indicates un-weathered to fresh hydrocarbon in parts of the study area and heavy metals were below detection limits. The vulnerability of the aquifer to hydrocarbon contamination was due to high permeability, unconsolidated coarse grained and poorly sorted sands, of the vadose zone as well as shallowness of the aquifer. It is recommended that boreholes in the study area should be of deeper depths, and well constructed to avoid contaminated water from the polluted zone entering the borehole through the annulus.


Sign in / Sign up

Export Citation Format

Share Document