Nutrient‐Release Rates of Controlled‐Release Fertilizers in Forest Soil

2007 ◽  
Vol 38 (5-6) ◽  
pp. 739-750 ◽  
Author(s):  
Diane L. Haase ◽  
Patricio Alzugaray ◽  
Robin Rose ◽  
Douglass F. Jacobs
2017 ◽  
Vol 27 (5) ◽  
pp. 639-643 ◽  
Author(s):  
Carey Grable ◽  
Joshua Knight ◽  
Dewayne L. Ingram

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.


2016 ◽  
Vol 99 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Nancy Thiex

Abstract A previously validated method for the determination of nitrogen release patterns of slow- and controlled-release fertilizers (SRFs and CRFs, respectively) was submitted to the Expert Review Panel (ERP) for Fertilizers for consideration of First Action Official MethodSM status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. The 180 day soil incubation-column leaching technique was demonstrated to be a robust and reliable method for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and the results were only slightly affected by variations in environmental factors such as microbial activity, soil moisture, temperature, and texture. The release of P and K were also studied, but at fewer replications than for N. Optimization experiments on the accelerated 74 h extraction method indicated that temperature was the only factor found to substantially influence nutrient-release rates from the materials studied, and an optimized extraction profile was established as follows: 2 h at 25°C, 2 h at 50°C, 20 h at 55°C, and 50 h at 60°C.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 797A-797
Author(s):  
Donald J. Merhaut* ◽  
Joseph Albano ◽  
Eugene K. Blythe ◽  
Julie Newman

Release patterns of ammonium, nitrate, phosphorus, potassium, calcium, magnesium, iron, manganese and zinc were measured during an eleven month period for four types of Controlled Release Fertilizers (CRF): Apex 17-5-11, Multicote 17-5-11, Nutricote 18-6-8 and Osmocote 24-4-9. Rate of fertilizer incorporation was 2.3 kg/m3 of nitrogen. Media consisted of 50% composted forest products, 35% ¼%-3/4% pine bark and 15% washed Builder's sand. The media was also amended with 0.60 kg/m3 of dolomite. Fertilizer was incorporated into the media with a cement mixer and placed into 2.6-L black polyethylene containers. Containers were placed on benches outside. Air and media temperature were monitored throughout the 11-month period. Containers were irrigated through a ring-dripper system. Leachate was collected twice weekly. Leachate electrical conductivity, pH, and nutrient content were measured weekly. Significant differences in the nutrient release patterns were observed between fertilizer types throughout much of the experimental period. Release rates were significantly greater during the first 20 weeks of the study compared to the last 20 weeks of the study, regardless of the fertilizer type.


2014 ◽  
Vol 97 (3) ◽  
pp. 643-660 ◽  
Author(s):  
L Carolina Medina ◽  
Jerry B Sartain ◽  
Thomas A Obreza ◽  
William L Hall ◽  
Nancy J Thiex

Abstract Several technologies have been proposed to characterize the nutrient release patterns of slow- release fertilizers (SRF) and controlled-release fertilizers (CRF) during the last few decades. These technologies have been developed mainly by manufacturers, and are product-specific, based on the regulation and analysis of each SRF and CRF product. Despite previous efforts to characterize SRF and CRF materials, no standardized, validated method exists to assess their nutrient release patterns. However, the increased production and distribution of these materials in specialty and nonspecialty markets requires an appropriate method to verify product claims and material performance. A soil incubation column leaching procedure was evaluated to determine its suitability as a standard method to estimate nitrogen (N) release patterns of SRFs and CRFs during 180 days. The influence of three soil/sand ratios, three incubation temperatures, and four soils on method behavior was assessed using five SRFs and three CRFs. In general, the highest soil/sand ratio increased the N release rate of all materials, but this effect was more marked for the SRFs. Temperature had the greatest influence on N release rates. For CRFs, the initial N release rates and the percentage N released/day increased as temperature increased. For SRFs, raising the temperature from 25 to 35°C increased initial N release rate and the total cumulative N released, and almost doubled the percentage released/day. The percentage N released/day from all products generally increased as the texture of the soil changed from sandy to loamy (Iowa>California>Pennsylvania>Florida). The soil incubation technique was demonstrated to be robust and reliable for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and variations in soil/sand ratio, temperature, and soil had little effect on the results.


HortScience ◽  
2014 ◽  
Vol 49 (12) ◽  
pp. 1568-1574 ◽  
Author(s):  
Luther C. Carson ◽  
Monica Ozores-Hampton ◽  
Kelly T. Morgan ◽  
Jerry B. Sartain

Determination of nutrient release duration from controlled-release fertilizers (CRFs) or soluble fertilizers encapsulated in polymer, resin, or sulfur covered fertilizer coated with a polymer differs among manufacturers, but may be determined as 75% to 80% nitrogen (N) release at a constant temperature (e.g., 20 to 25 °C). Increases or decreases in temperature compared with the manufacturer release determination temperature increase or decrease CRF N release; thus, coated fertilizer may release more rapidly than stated during the fall season when soil temperatures in seepage-irrigated tomato (Solanum lycopersicum) production can reach 40.1 °C. The objectives of this study were to evaluate N release duration of CRFs by measuring N release from CRFs incubated in pouches under polyethylene mulch-covered raised beds and to determine the CRF duration suitable for incorporation into a fall tomato fertility program. In 2011 and 2013, 12 and 14 CRFs from Agrium Advanced Technologies, Everris, Florikan, and Chisso-Asahi Fertilizer were sealed in fiberglass mesh pouches (12.7 × 14 cm) that were buried 10 cm below the bed surface in a tomato crop grown using commercial production practices. A data logger collected soil temperature 10 cm below the bed surface. Pouches were collected and N content was measured eight times through two fall seasons. A nonlinear regression model was fit to the data to determine N release rate. During the 2011 and 2013 seasons, minimum, average, and maximum soil temperatures were 21.2 and 19.2, 25.7 and 23.5, and 32.2 and 27.7 °C, respectively. Seasonal total CRF N release was between 77.6% and 93.8% during 2011 and 58.3% and 94.3% in 2013. In 2011, PCU90 and in 2013, PCU90 and PCNPK120 had the highest seasonal total percentage N release (PNR) and FL180 had the lowest in both years. A nonlinear regression fit N release from CRF with R2 = 0.85 to 0.99 during 2011 and 0.49 to 0.99 during 2013. Nitrogen release from all CRFs was faster than the manufacturer’s stated release, probably as a result of high fall bed temperatures. A CRF or CRF mixture containing CRFs of 120- to 180-day release duration may be recommended, but the CRFs must release greater than 75% N during the season.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 456D-456
Author(s):  
Andrew Ristvey ◽  
John Lea-Cox

Nutrient release patterns from several different controlled-release fertilizers (CRF) were studied during the overwintering period of a long-term nutrient uptake, leaching, and loss study of Azalea (Rhododendron) cv. `Karen' and Holly (Ilex cornuta) cv. `China Girl', under sprinkler and drip irrigation. In Maryland, diurnal winter temperatures can vary from ≈10 °C to above 15 °C. Most growers, therefore, cover frames with opaque plastic for cold protection from November through April. This is also the period when many growers apply CRFs on those plant species that take more than 1 year to produce. Few data are presently available on the release patterns of CRFs under variable temperature conditions in late winter/early spring. We hypothesized that substrate temperatures warmer than 15–16 °C will result in CRFs releasing nutrients at a time when root systems are inactive, with a major loss of nutrients with the first few irrigations in Spring. This 105-day study quantified nitrogen (N) and phosphorus release patterns from four brands of CRF (Osmocote, Nutricote, Scotts High N, and Polyon) with 270- and 360-day release rates, under these conditions. Each CRF was top dressed onto blocks of 18-month-old holly or azalea (n = 112) in 11.5-L (3-gal) containers, at a (low) rate of 6.1 g N per container. Ten randomly selected pots from each treatment were sampled every 15 days using two sequential leachings of distilled water, for a target leaching fraction of 25%. Leachates were recovered and analyzed for nitrate and orthophosphate concentrations. Ambient canopy temperatures were recorded continuously with remote temperature (HoBo) sensors from which degree days above 15–16 °C were calculated and correlated with CRF release patterns.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 780-787 ◽  
Author(s):  
Donald J. Merhaut ◽  
Eugene K. Blythe ◽  
Julie P. Newman ◽  
Joseph P. Albano

Release characteristics of four types of controlled-release fertilizers (Osmocote, Nutricote, Polyon, and Multicote) were studied during a 47-week simulated plant production cycle. The 2.4-L containers containing a low-fertility, acid-based substrate were placed in an unheated greenhouse and subjected to environmental conditions often used for production of azaleas and camellias. Leachate from containers was collected weekly and monitored for pH, electrical conductivity, and concentrations of NH4+ N, NO3–N, total P and total K. Leachate concentrations of all nutrients were relatively high during the first 10 to 20 weeks of the study, and then gradually decreased during the remaining portion of the experiment. Differences were observed among fertilizer types, with Multicote often resulting in higher concentrations of N, P, and K in leachates compared to the leachates from the other fertilizer types during the first half of the study. Concentrations of NO3– and P from all fertilizer types were often above permissible levels as cited in the federal Clean Water Act.


2005 ◽  
Vol 15 (2) ◽  
pp. 332-335 ◽  
Author(s):  
Timothy K. Broschat

Five-gram (0.18 oz) samples of two controlled-release fertilizers (CRFs), Osmocote 15N–3.9P–10K (8–9 month) (OSM) and Nutricote 18N–2.6P–6.7K (type 180) (NUTR), were sealed into polypropylene mesh packets that were placed on the surface of a 5 pine bark: 4 sedge peat: 1 sand (by volume) potting substrate (PS), buried 10 cm (3.9 inches) deep below the surface of PS, buried 10 cm below the surface of saturated silica sand (SS), or in a container of deionized water only. Containers with PS received 120 mL (4.1 floz) of deionized water three times per week, but the containers with SS or water only had no drainage and were sealed to prevent evaporation. Samples were removed after 2, 5, or 7 months of incubation at 23 °C (73.4 °F) and fertilizer prills were crushed, extracted with water, and analyzed for ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), phosphorus (P), and potassium (K). Release rates of NO3-N were slightly faster than those of NH4-N and both N ions were released from both products much more rapidly than P or K. After 7 months, OSM prills retained only 8% of their NO3-N, 11% of their NH4-N, 25% of their K, and 46% of their P when averaged across all treatments. Nutricote prills retained 21% of their NO3-N, 28% of their NH4-N, 51% of their K, and 65% of their P. Release of all nutrients from both fertilizers was slowest when applied to the surface of PS, while both products released most rapidly in water only. Release rates in water only exceeded those in SS, presumably due to lower rates of mass flow in SS.


2015 ◽  
Vol 31 (1) ◽  
Author(s):  
Zahid Majeed ◽  
Nur Kamila Ramli ◽  
Nurlidia Mansor ◽  
Zakaria Man

AbstractBiodegradable polymer-coated controlled-release fertilizers (PC-CRFs) are essential means to reduce cost, improve marketability, conserve land fertility, achieve high crop yields and combat climate challenges. It is known that about 15–30% of any fertilizer packed in a PC-CRF does not get released due to the concentration gradient difference across the polymer coatings. To release the trapped fertilizer(s), it is desired that polymer-based coatings should biodegrade after the fertilizer is completely released into the soil. This review has aimed to provide a comprehensive account for various biodegradable polymers/blends derived either from natural or synthetic sources which are cited in the literature for PC-CRFs. In addition, this review covers the discussion on their classification criteria, trends in the processes of fertilizer coatings, methodological issues for their biodegradation assessment, coating attributes that affect the biodegradability and an outlook into their biodegradation kinetic models that involve enzymes and microbial processes. It also concludes that experimental as well as modeling data are insufficient to assess the biodegradation contribution of the overall nutrient release in PC-CRFs.


Sign in / Sign up

Export Citation Format

Share Document