Responses of Anise Medicinal Plant Species in Terms of Essential Oil Contents and Concentrations to Different Planting Times and Various Nitrogen Fertilizer Sources under Semi-Arid Climatic Conditions

Author(s):  
Fatemeh Ranjbar ◽  
Mohammad Pessarakli ◽  
Parviz Rezvani Moghaddam ◽  
Alireza Koocheki
2018 ◽  
Vol 87 (3) ◽  
Author(s):  
Piotr Sugier ◽  
Aleksander Kołos ◽  
Dan Wołkowycki ◽  
Danuta Sugier ◽  
Andrzej Plak ◽  
...  

<em>Arnica montana</em> L. is a critically endangered and highly valued medicinal plant species in Europe. We show the inter-relationships between arnica and accompanying plant species, as well as soil factors, that promote the persistence of the studied forest arnica populations in terms of active protection of this species in the northeast region of Europe. The population characteristics and plant species composition were assessed during a field study. Additionally, soil samples were taken and analyzed to assess variation in soil conditions in the habitats of arnica populations. Correlations between population characteristics and soil properties were highlighted. The forest habitats of arnica presented in this study differ from those described in other European mountain and submountain areas. The sandy and very poor soils are characterized by a very low content of macro- and microelements, and a strong acid reaction. The positive correlation between population characteristics and Ca and K indicates an important role of these macroelements in flower head production. Acidity, K, Ca, the sum of exchangeable bases, and base saturation play crucial roles in the persistence of arnica populations in pine forests. The level of acidity and its consequences result from soil-forming processes and climatic conditions rather than air pollution. When planning active protection scenarios, special attention should be paid to the frequency and cover of <em>Vaccinium myrtillus</em>, which can act as a competitor in forest habitats. Assessment of soil conditions that favor the persistence of the studied arnica populations and species relationships is important for improving knowledge of the ecology of the species and for the active protection of endangered plant species.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Danuta Sugier ◽  
Piotr Sugier ◽  
Urszula Gawlik-Dziki

Arnica montana(L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production.


2011 ◽  
Vol 13 (4) ◽  
pp. 507-511 ◽  
Author(s):  
J.M. Vasconcelos ◽  
M.A. Rodrigues ◽  
S.C. Vasconcelos Filho ◽  
J.F. Sales ◽  
F.G. Silva ◽  
...  

"Quina" (Strychnos pseudoquina A. St. Hil) is a medicinal plant species from the Brazilian Cerrado. As its seeds show dormancy, they were subjected to the treatments pre-cooling at 5ºC during 7 days, pre-heating at 40ºC during 7 days, pre-soaking in sulfuric acid PA during 5 and 15 min, pre-soaking in boiling water during 5 and 15 min, pre-soaking in 100 and 200 ppm gibberellic acid during 48 h, pre-soaking in distilled water during 24 and 48 h, and mechanical scarification to break dormancy. Counts were daily conducted from the 2nd day after the experiment implementation until the germination stabilization at the 65th day. The germination speed index (GSI) and the germination percentage were evaluated. Germination rates above 96% were reached in seeds pre-soaked in water during 48 h and substrate moistened with water or KNO3.


2021 ◽  
Author(s):  
Rupali Sharma ◽  
Hukum Singh

Abstract Human-induced CO2 emissions since the preindustrial era have accumulated CO2 in the atmosphere which has influenced the plant structure and function including bio-chemical constituents of the plant system. The Himalayan vegetation has been predicted to be more vulnerable and sensitive to climate change. However, it is still not well documented that how atmospheric CO2 concentration will change the biochemical constituents considering nutrients status of Himalayan endangered plants in future climate change. Hence, we examined the impacts of elevated CO2 concentrations (ambient- ~ 400, 600, and 800 µmol CO2 mol− 1) on biochemical constituents (chlorophyll, carotenoids, ascorbic acid, protein, and total sugars and carbon partitioning) and nutrients response (potassium, phosphorus, and magnesium) in leaf, stem and root tissue of Asparagus racemosus Willd. (an endangered medicinal plant species of Himalayas). The results showed that the elevated CO2 concentration significantly (p ≤ 0.05) enhanced the chlorophyll, protein, total sugars, and carbon accumulation conversely diminished ascorbic acid in leaf tissues. The nutrients accumulation especially potassium and magnesium were significantly (p ≤ 0.05) improved while phosphorus accumulation suppressed under elevated CO2 concentration. Moreover, elevated CO2 notably altered protein, sugars, carbon, and nutrients partitioning in plant tissues viz. leaf, stem, and root of A. racemosus. The fate of rising atmospheric CO2 concentrations beyond 800 µmol CO2 mol− 1 will require much more study. Further studies are needed to understand the impacts of elevated CO2 concentration as well as a combination with other associated climatic variables on biochemical response particularly bioactive ingredients/health-promoting substances and nutrient profiling of this and other endangered medicinal plant species for improving livelihood support of the society.


2021 ◽  
Vol 12 ◽  
Author(s):  
G. Anywar ◽  
E. Kakudidi ◽  
R. Byamukama ◽  
J. Mukonzo ◽  
A. Schubert ◽  
...  

Introduction: Despite concerns about toxicity, potentially harmful effects and herb-drug interactions, the use of herbal medicines remains widely practiced by people living with HIV/AIDS (PLHIV) in Uganda.Objective: The objective of the paper was to comprehensively review the literature on the toxicity and chemical composition of commonly used medicinal plant species in treating PLHIV in Uganda.Methods: We reviewed relevant articles and books published over the last sixty years on ethnobotany, antiviral/anti-HIV activity, toxicity, phytochemistry of Vachellia hockii, Albizia coriaria, Bridelia micrantha, Cryptolepis sanguinolenta, Erythrina abyssinica, Gardenia ternifolia, Gymnosporia senegalensis, Psorospermum febrifugium, Securidaca longipendunculata, Warburgia ugandensis and Zanthoxylum chalybeum and their synonyms. We searched PubMed, Web of Science, Scopus, Science Direct and Google Scholar.Discussion: Most of the plant species reviewed apart from P. febrifugium, S. longipedunculata and C. sanguinolenta lacked detailed phytochemical analyses as well as the quantification and characterization of their constituents. Crude plant extracts were the most commonly used. However, purified/single component extracts from different plant parts were also used in some studies. The U87 human glioblastoma was the most commonly used cell line. Water, ethanol, methanol and DMSO were the commonest solvents used. In some instances, isolated purified compounds/extracts such as Cryptolepine and Psorospermin were used.Conclusion: Cytotoxicity varied with cell type, solvent and extract type used making it difficult for direct comparison of the plant species. Five of the eleven plant species namely, A. coriaria, C. sanguinolenta, G. ternifolia, P. febrifugium and Z. chalybeum had no cytotoxicity studies in animal models. For the remaining six plant species, the crude aqueous and ethanol extracts were mainly used in acute oral toxicity studies in mice. Herbalists reported only A. coriaria and W. ugandensis to cause toxic side effects in humans. However, selective cytotoxic plant extracts can potentially be beneficial as anticancer or anti-tumour drugs.


Sign in / Sign up

Export Citation Format

Share Document