Excess EDDHA in the nutrient solution on! Iron uptake by bush bean plants

1976 ◽  
Vol 7 (1) ◽  
pp. 93-96 ◽  
Author(s):  
A. Wallace ◽  
R. T. Mueller ◽  
E. M. Romney
1970 ◽  
Vol 48 (12) ◽  
pp. 2213-2217 ◽  
Author(s):  
B. Singh ◽  
D. K. Salunkhe

A solution containing 0.5 p.p.m. of atrazine, simazine, igran, or GS-14254 with 0.2% triton-B 1956 was applied to the foliage of 11-day-old seedlings of bush beans, Phaseolus vulgaris L. cultivar Tender-green, growing on vermiculite in a controlled environment. The activities of nitrate reductase, glutamic-pyruvic transaminase, α-amylase, starch phosphorylase, and adenosine triphosphatase were determined 5,10, and 20 days after treatment. In general, the activity of each of the five enzymes was stimulated by the treatment. The results suggest that protein increase following the application of.s-triazines to bean plants may stem in part from an enhanced rate of amino acid formation resulting from the induced increment in nitrate reductase and transaminase activity. The application of these chemicals also creates a metabolic condition favorable for greater use of carbohydrates needed for nitrate reduction and protein synthesis, and as a source of organic acid synthesis.


2009 ◽  
Vol 168 (1) ◽  
pp. 479-483 ◽  
Author(s):  
E.E.C. Melo ◽  
E.T.S. Costa ◽  
L.R.G. Guilherme ◽  
V. Faquin ◽  
C.W.A. Nascimento

1980 ◽  
Vol 2 (1-2) ◽  
pp. 111-113 ◽  
Author(s):  
A. Wallace ◽  
R. T. Mueller ◽  
R. A. Wood

2015 ◽  
Vol 44 (4) ◽  
pp. 567-588 ◽  
Author(s):  
Z. Strack ◽  
R. Karwowska ◽  
E. Kraszewska

Studies were performed on young bean plants, grown in water culture. The effect of salt stress, X-flays and flooding on growth, photosynthesis and translocation of assimilates was investigated. Salt stress (NaCl and Na<sub>2</sub>SO<sub>4</sub>), especially at - 4.5 atm. of water potential, depressed all the mentioned processes, but most dramatically - photosynthesis. Export of photosynthetes from the blades decreased. Salt stress not only reduced the rate of translocation, but also influenced the pattern of <sup>14</sup>C-distoibution, especially inhibited transport to apical part, with growth seriously retarded. Gibberellin (GA<sub>3</sub>, 100 ppm sprayed on leaves) counteracted the negative effects caused by salinization, but did not affected either photosynthesis, or translocation in plants from normal nutrient solution. The conclusion may be advanced, that salt stress disturbed the balance of plant hormones especially gibberellins, which probably participate in. regulation of assimilate translocation.


2021 ◽  
Author(s):  
Marcilene Machado dos Santos Sarah ◽  
Renato de Mello Prado ◽  
Jonas Pereira de Souza Júnior ◽  
Gelza Carliane Marques Teixeira ◽  
João Carlos dos Santos Duarte ◽  
...  

Abstract Potassium (K) deficiency affects physiological performance and decreasing vegetative growth in common bean plants. However, silicon (Si) supplied via nutrient solution or foliar application may relieve nutritional stress. Thus, two experiments were carried out: initially, a test was performed to determine the best source and concentration of leaf-applied Si. Subsequently, the chosen Si source was applied via nutrient solution or via leaf to verify if it is efficient in alleviating the effects caused by K deficiency. To that end, a completely randomized 2 x 3 factorial design was used, with two levels of K: deficient (0.2 mmol L− 1 of K) and sufficient (6 mmol L− 1 of K); and Si: via nutrient solution (2 mmol L− 1 of Si) or foliar spray (5.4 mmol L− 1 of Si) and control (0 mmol L− 1 of Si). In the first experiment, foliar spraying with sodium silicate and stabilized potassium at a concentration of 5.4 mmol L− 1 was better in favoring the physiology of bean plants. In the second experiment, K deficiency without the addition of Si compromised the plant's growth. Si applied through nutrient solution or foliar spray relieved K deficiency stress, increasing chlorophylls and carotenoids content, photosynthetic activity, water use efficiency and vegetative growth.


Sign in / Sign up

Export Citation Format

Share Document