Second-order convergent algorithms for the steady-state Riccati equation†

1978 ◽  
Vol 28 (2) ◽  
pp. 295-306 ◽  
Author(s):  
BRIAN D. O. ANDERSON
1993 ◽  
Vol 75 (2) ◽  
pp. 648-656 ◽  
Author(s):  
G. D. Marsh ◽  
D. H. Paterson ◽  
J. J. Potwarka ◽  
R. T. Thompson

The purpose of this study was to use 31P-nuclear magnetic resonance spectroscopy to examine changes in wrist flexor muscle metabolism during the transitions from rest to steady-state exercise (on-transient) and back to rest (off-transient). Five healthy young males (mean age 25 +/- 2 yr) performed a series of square-wave exercise tests, each consisting of 5 min of moderate-intensity work followed by a 5-min recovery period. The subjects repeated this protocol six times, and each individual's results were pooled before analysis. ATP and intracellular pH did not change significantly during exercise or recovery. Phosphocreatine (PCr) declined progressively at the onset of exercise, reaching a plateau after approximately 2 min. A reciprocal increase in Pi occurred during the onset of exercise. During the recovery period PCr was resynthesized, whereas Pi returned to resting levels. The data were plotted as a function of time and fit with both first- and second-order exponential growth or decay models; however, the second-order model did not significantly improve the fit of the data. Time constants for the first-order model of the on- and off-transient responses for both PCr and Pi were approximately 30 s. These values are nearly identical to the time constants for oxygen consumption during submaximal exercise that have been reported previously by several authors. The results of this study show that the metabolism of muscle PCr during steady-state exercise and recovery can be accurately described by a monoexponential model and, further, suggest that a first-order proportionality exists between metabolic substrate utilization and oxygen consumption.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1193 ◽  
Author(s):  
Paolo Di Barba ◽  
Luisa Fattorusso ◽  
Mario Versaci

In the framework of 2D circular membrane Micro-Electric-Mechanical-Systems (MEMS), a new non-linear second-order differential model with singularity in the steady-state case is presented in this paper. In particular, starting from the fact that the electric field magnitude is locally proportional to the curvature of the membrane, the problem is formalized in terms of the mean curvature. Then, a result of the existence of at least one solution is achieved. Finally, two different approaches prove that the uniqueness of the solutions is not ensured.


2005 ◽  
Vol 70 (7) ◽  
pp. 941-950 ◽  
Author(s):  
Eugene S. Kryachko

The relationship between the Riccati and Schrödinger equations is discussed. It is shown that the transformation converting the Riccati equation into its normal form is expressed in terms of the roots of its algebraic part treated as a second-order polynomial. Together with the well-known Riccati transformation, a new transformation which also links the Riccati equation to the second-order linear differential equation is introduced. The latter is actually the Riccati transformation applied to an "inverse" Riccati equation. Two specific forms of the Riccati equation admitting the explicit particular rational solutions are obtained.


1988 ◽  
Vol 40 (3) ◽  
pp. 505-515 ◽  
Author(s):  
M. Jardine ◽  
E. R. Priest

We examine the global energetics of a recent weakly nonlinear theory of fast steady-state reconnection in an incompressible plasma (Jardine & Priest 1988). This is itself an extension to second order of the Priest & Forbes (1986) family of models, of which Petschek-like and Sonnerup-like solutions are special cases. While to first order we find that the energy conversion is insensitive to the type of solution (such as slow compression or flux pile-up), to second order not only does the total energy converted vary but so also does the ratio of the thermal to kinetic energies produced. For a slow compression with a strongly converging flow, the amount of energy converted is greatest and is dominated by the thermal contribution, while for a flux pile-up with a strongly diverging flow, the amount of energy converted is smallest and is dominated by the kinetic contribution. We also find that the total energy flowing out of the downstream region can be increased either by increasing the external magnetic Mach number Me or the external plasma beta βe Increasing Me also enhances the variations between different types of solutions.


1976 ◽  
Vol 98 (4) ◽  
pp. 395-406 ◽  
Author(s):  
D. J. Martin ◽  
C. R. Burrows

The frequency responses of an experimental electro-hydraulic position control system and a simulation of the system are compared. Three different valve models are used in the simulation in an attempt to highlight the important parameters of an electro-hydraulic servovalve. It is found that a second order compensated valve model based on steady-state considerations provides a good correlation with the experimental system up to 35Hz and can be used for stability calculations up to 80Hz.


Sign in / Sign up

Export Citation Format

Share Document