MODFET DC model based on a new velocity-electric field characteristic

1991 ◽  
Vol 71 (1) ◽  
pp. 55-66
Author(s):  
QINCUI XIA ◽  
M. EL NOKALI
2012 ◽  
Vol 717-720 ◽  
pp. 1097-1100 ◽  
Author(s):  
Shiro Hino ◽  
Naruhisa Miura ◽  
Akihiko Furukawa ◽  
Shoyu Watanabe ◽  
Yukiyasu Nakao ◽  
...  

High speed switching is desired to reduce switching losses of SiC-MOSFETs. In order to realize SiC-MOSFETs capable of high speed switching, we numerically evaluated the electric field induced in SiC-MOSFETs during switching using an equivalent circuit model. Based on the evaluation, we designed a SiC-MOSFET, which successfully demonstrated high speed switching with a dV/dt of over 70 V/ns.


2014 ◽  
Vol 875-877 ◽  
pp. 1683-1686
Author(s):  
Cheng Liang Jia ◽  
You Shan Sun ◽  
Chao Huang ◽  
Wan Peng Zhang ◽  
Fang Chen

A laboratory-scale ESP with new electrode configuration was established to investigate the electric field characteristic. Eight teeth prick line and prick plate with the length of 20mm were employed as discharge electrodes, respectively. The effects of discharge electrode type and electrode gap on V-I characteristic and surface current density were studied. The results showed that the optimum electrode gaps were 350-400mm for eight teeth line and 300-350mm for prick plate, which could obtained higher average current density and lower variance.


2013 ◽  
Vol 22 (14) ◽  
pp. 1350088 ◽  
Author(s):  
THOMAS E. KIESS

We exhibit a classical lepton model based on a perfect fluid that reproduces leptonic charges and masses in arbitrarily small volumes without metric singularities or pressure discontinuities. This solution is the first of this kind to our knowledge, because to date the only classical general relativistic models that have reproduced leptonic charges and masses in arbitrarily small volumes are based on imperfect (anisotopic) fluids or perfect fluids with electric field discontinuities. We use a Maxwell–Einstein exact metric for a spherically symmetric static perfect fluid in a region in which the pressure vanishes at a boundary, beyond which the metric is of the Reissner–Nordström form. This construction models lepton mass and charge in the limit as the boundary → 0.


Sign in / Sign up

Export Citation Format

Share Document