Low-strain dynamic mechanical properties of keratin fibers during water absorption

1981 ◽  
Vol 19 (1) ◽  
pp. 153-165 ◽  
Author(s):  
G. D. Danilatos ◽  
R. Postle
2018 ◽  
Vol 53 (1) ◽  
pp. 65-72 ◽  
Author(s):  
MK Gupta ◽  
Rohit Singh

In the present work, a novel physical treatment (PLA coating) of sisal fibres and its influence on the water absorption, static and dynamic mechanical properties of its composites has been presented. The treated sisal fibres were used consisted of alkali treatment and PLA coating to fabricate its polyester-based composites by hand lay-up technique keeping constant fibres content as 20 wt.% . Water absorption analysis was carried out in terms of water uptake (%), and sorption, diffusion and permeability coefficient. In addition, static properties were examined in terms of tensile, flexural and impact test, and dynamic mechanical analysis was performed in terms of storage modulus [Formula: see text], loss modulus [Formula: see text], damping [Formula: see text] and glass transition temperature [Formula: see text]. It was reported that the PLA-coated sisal composites showed the best performance in water absorption, mechanical and dynamic mechanical properties than pure sisal and alkali-treated sisal composites. There were 33%, 49%, 48%, and 27% improvement in water resistance, tensile strength, flexural strength and impact strength, respectively, of PLA-coated sisal composites as compared to that of pure sisal composite.


2016 ◽  
Vol 47 (2) ◽  
pp. 211-232 ◽  
Author(s):  
G Rajeshkumar ◽  
V Hariharan ◽  
TP Sathishkumar ◽  
V Fiore ◽  
T Scalici

Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental condition. The dynamic mechanical properties of the composites loaded with 40% in volume were analyzed by varying the reinforcement size and the load frequency (i.e., 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz). It was found that the glass transition temperature of short fiber-reinforced composites is higher than that of the composite loaded with particles.


2013 ◽  
Vol 853 ◽  
pp. 40-45 ◽  
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Cheng Ho Chen

Nanocomposite samples containing epoxy resin, glass fiber and 0~2 wt.% SiO2 nanopowder are prepared. The effects of SiO2 addition on the water absorption rate, glass transition temperature (Tg) and dynamic mechanical properties of the various samples are then observed. The water absorption of the nanocomposite specimens is then compared with that of pure glass fiber/epoxy composite specimens when tested in water. The results show that the addition of 2 wt.% SiO2 reduces the water absorption from 0.0704% to 0.0573%. The storage modulus with adding 2wt.% silica nanocomposite compared to the neat composite raises up 13.82%. Following the water absorption test, the mechanical properties of the samples are not obvious change. Therefore, the experimental results indicate that 2wt.% SiO2 addition is beneficial to the water resistance and dynamic mechanical properties of epoxy resin / glass fiber nanocomposites.


2015 ◽  
Vol 37 (2) ◽  
pp. 162-167
Author(s):  
V.A. Vilensky ◽  
◽  
L.V. Kobrina ◽  
S.V. Riabov ◽  
Y.Y. Kercha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document