Migration of polyethylene glycol coated gold nanoparticles in surrogate natural barriers

2020 ◽  
Vol 57 (7) ◽  
pp. 813-824
Author(s):  
Carlos Ordonez ◽  
Naoko Watanabe ◽  
Tamotsu Kozaki
MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3353-3360
Author(s):  
Susana Helena Arellano Ramírez ◽  
Perla García Casillas ◽  
Christian Chapa González

AbstractA significant area of research is biomedical applications of nanoparticles which involves efforts to control the physicochemical properties through simple and scalable processes. Gold nanoparticles have received considerable attention due to their unique properties that they exhibit based on their morphology. Gold nanospheres (AuNSs) and nanorods (AuNRs) were prepared with a seed-mediated method followed of polyethylene glycol (PEG)-coating. The seeds were prepared with 0.1 M cetyltrimethyl-ammonium bromide (CTAB), 0.005 M chloroauric acid (HAuCl4), and 0.01 M sodium borohydride (NaBH4) solution. Gold nanoparticles with spherical morphology was achieved by growth by aggregation at room temperature, while to achieve the rod morphology 0.1 M silver nitrate (AgNO3) and 0.1 M ascorbic acid solution were added. The gold nanoparticles obtained by the seed-mediated synthesis have spherical or rod shapes, depending on the experimental conditions, and a uniform particle size. Surface functionalization was developed using polyethylene glycol. Morphology, and size distribution of AuNPs were evaluated by Field Emission Scanning Electron Microscopy. The average size of AuNSs, and AuNRs was 7.85nm and 7.96 x 31.47nm respectively. Fourier transform infrared spectrometry was performed to corroborate the presence of PEG in the AuNPs surface. Additionally, suspensions of AuNSs and AuNRs were evaluated by UV-Vis spectroscopy. Gold nanoparticles were stored for several days at room temperature and it was observed that the colloidal stability increased once gold nanoparticles were coated with PEG due to the shield formed in the surface of the NPs and the increase in size which were 9.65±1.90 nm of diameter for AuNSs and for AuNRs were 29.03±5.88 and 8.39±1.02 nm for length and transverse axis, respectively.


2016 ◽  
Vol 28 (1) ◽  
pp. 239-243 ◽  
Author(s):  
Shuaidong Huo ◽  
Shizhu Chen ◽  
Ningqiang Gong ◽  
Juan Liu ◽  
Xianlei Li ◽  
...  

2011 ◽  
Vol 115 (8) ◽  
pp. 3279-3285 ◽  
Author(s):  
Yoshikiyo Hatakeyama ◽  
Takeshi Morita ◽  
Satoshi Takahashi ◽  
Kei Onishi ◽  
Keiko Nishikawa

Author(s):  
RADITYA ISWANDANA ◽  
RICHA NURSELVIANA ◽  
SUTRIYO SUTRIYO

Objective: Gold nanoparticles (AuNPs) are highly useful for drug delivery, but their application is limited by their stability as they readily aggregate.This issue can be prevented by adding a stabilizing agent such as resveratrol (RSV), which is a polyphenol derived from plants, that is used to preventcancer. Therefore, we propose a novel method to prepare stable RSV-conjugated nanoparticles modified with polyethylene glycol (RSV-AuNP-PEG).Methods: In the first step, the Turkevich method was used to synthesize the AuNPs. Then, PEG was added as stabilizer agent and conjugated with RSV.The synthesized conjugates were characterized using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, particle sizeanalysis, and high-performance liquid chromatography.Results: The obtained RSV-AuNP-PEG had a particle size of 83.93 nm with a polydispersity index (PDI) of 0.562 and formed a translucent purple-redfluid in solution. The zeta potential was −22.9 mV, and the highest entrapment efficiency was 75.86±0.66%. For comparison, the RSV-AuNP solutionwas purple and turbid, the particle size was 51.97 nm with a PDI of 0.694, and the zeta potential was −24.6 mV. The stability test results showed thatthe storage stability of RSV-AuNP-PEG was better than that of AuNP-RSV. Further, the RSV-AuNP-PEG was shown to be most stable in 2% bovine serumalbumin (BSA) while the AuNP-RSV was most stable in 2% BSA in phosphate-buffered saline pH 7.4.Conclusion: These results show that modification of RSV-conjugated AuNPs with PEG effectively prevents their aggregation in storage, but only incertain mediums.


2016 ◽  
Vol 55 (18) ◽  
pp. 5483-5487 ◽  
Author(s):  
Pablo del Pino ◽  
Fang Yang ◽  
Beatriz Pelaz ◽  
Qian Zhang ◽  
Karsten Kantner ◽  
...  

2016 ◽  
Vol 15 (2) ◽  
pp. 181-186
Author(s):  
Ming-Hao Yao ◽  
Jie Yang ◽  
Dong-Hui Zhao ◽  
Rui-Xue Xia ◽  
Rui-Mei Jin ◽  
...  

A facile method for in situ fabrication of three-dimensional gold nanoparticles micropatterns throughout a polyethylene glycol hydrogel substrate has been developed by combining photochemical synthesis of gold nanoparticles with photolithography technology.


2007 ◽  
Vol 3 (3) ◽  
pp. 224-238 ◽  
Author(s):  
Resham Bhattacharya ◽  
Chitta Ranjan Patra ◽  
Alexis Earl ◽  
Shanfeng Wang ◽  
Aaron Katarya ◽  
...  

Author(s):  
Sathishkumar Kannaiyan ◽  
T.G.Ashwin Narayanan ◽  
P.Karthick Sarathy ◽  
Nagarjun Sudhakar ◽  
Rama Krishnan

Poly lactic acid-polyethylene glycol (PLA-co-PEG) copolyester was synthesized from oligomer of L-lactic acid and poly ethylene glycol (PEG) using stannous octoate as catalyst. 6-Thioguanine containing Poly lactic acid-polyethylene glycol (PLA-co-PEG) nanocapsules were prepared in the presence and absence of gold nanoparticles via the W/O/W emulsification solvent-evaporation method. The morphologies of prepared nanocapsules changed substantially because of the presence of gold nanoparticles. From SEM and TEM measurements, the average size of the polymer nanocapsules and gold nanoparticles were found to be in range of 230-260 nm and 18-20 nm, respectively. In general the drug release was quicker in Phosphate buffer saline (pH 7.4) compared to 0.1M hydrochloric acid and this may be due to higher solubility, higher swelling and penetration properties of PLA-co-PEG in PBS compared to HCl. Polymer nanocapsules with gold show a prolonged controlled release with higher encapsulation efficiency (75%) compared to that of polymer nanocapsules (45%) in the absence of gold nanoparticles. It may be due to the more entrapping efficiency of gold and less diffusivity of drugs from the nanocapsules. Application of in vitro drug release data to various kinetic equations indicated Higuchi model, indicating a uniform distribution of thioguanine in the nanocapsules.


Sign in / Sign up

Export Citation Format

Share Document