Impaired first‐phase insulin response predicts postprandial blood glucose increment in patients with recently diagnosed type 2 diabetes

2007 ◽  
Vol 67 (3) ◽  
pp. 327-336 ◽  
Author(s):  
C. Gredal ◽  
A. M. Rosenfalck ◽  
A. Dejgaard ◽  
J. Hilsted
Diabetologia ◽  
2021 ◽  
Author(s):  
Mona M. Elbalshy ◽  
Andrew N. Reynolds ◽  
Evelyn Mete ◽  
Caleb Robinson ◽  
Indrawati Oey ◽  
...  

1998 ◽  
Vol 95 (3) ◽  
pp. 325-329 ◽  
Author(s):  
Jeannie F. TODD ◽  
C. Mark B. EDWARDS ◽  
Mohammad A. GHATEI ◽  
Hugh M. MATHER ◽  
Stephen R. BLOOM

1.Glucagon-like peptide-1 (7-36) amide (GLP-1) is released into the circulation after meals and is the most potent physiological insulinotropic hormone in man. GLP-1 has the advantages over other therapeutic agents for Type 2 diabetes of also suppressing glucagon secretion and delaying gastric emptying. One of the initial abnormalities of Type 2 diabetes is the loss of the first-phase insulin response, leading to postprandial hyperglycaemia. 2.To investigate the therapeutic potential of GLP-1 in Type 2 diabetes, six patients were entered into a 6-week, double-blind crossover trial during which each received 3 weeks treatment with subcutaneous GLP-1 or saline, self-administered three times a day immediately before meals. A standard test meal was given at the beginning and end of each treatment period. 3.GLP-1 reduced plasma glucose area under the curve (AUC) after the standard test meal by 58% (AUC, 0–240 ;min: GLP-1 start of treatment, 196±141 ;mmol·min-1·l-1; saline start of treatment, 469±124 ;mmol·min-1·l-1; F = 16.4, P< 0.05). The plasma insulin excursions were significantly higher with GLP-1 compared with saline over the initial postprandial 30 ;min, the time period during which the GLP-1 concentration was considerably elevated. The plasma glucagon levels were significantly lower over the 240-min postprandial period with GLP-1 treatment. The beneficial effects of GLP-1 on plasma glucose, insulin and glucagon concentrations were fully maintained for the 3-week treatment period. 4.We have demonstrated a significant improvement in postprandial glycaemic control with subcutaneous GLP-1 treatment. GLP-1 improves glycaemic control partially by restoring the first-phase insulin response and suppressing glucagon and is a potential treatment for Type 2 diabetes.


2019 ◽  
Vol 121 (5) ◽  
pp. 560-566 ◽  
Author(s):  
Jiahui Peng ◽  
Jingyi Lu ◽  
Xiaojing Ma ◽  
Lingwen Ying ◽  
Wei Lu ◽  
...  

AbstractThere is emerging evidence that glycaemic variability (GV) plays an important role in the development of diabetic complications. The current study aimed to compare the effects of lifestyle intervention (LI) with and without partial meal replacement (MR) on GV. A total of 123 patients with newly diagnosed and untreated type 2 diabetes (T2D) were randomised to receive either LI together with breakfast replacement with a liquid formula (LI+MR) (n 62) or LI alone (n 61) for 4 weeks and completed the study. Each participant was instructed to have three main meals per d and underwent 72-h continuous glucose monitoring (CGM) both before and after intervention. Measures of GV assessed by CGM included the incremental AUC of postprandial blood glucose (AUCpp), standard deviation of blood glucose (SDBG), glucose CV and mean amplitude of glycaemic excursions (MAGE). After a 4-week intervention, the improvements in systolic blood pressure (P=0·046) and time in range (P=0·033) were more pronounced in the LI+MR group than in the LI group. Furthermore, LI+MR caused significantly greater improvements in all GV metrics including SDBG (P=0·005), CV (P=0·002), MAGE (P=0·016) and AUCpp (P<0·001) than did LI. LI+MR (v. LI) was independently associated with improvements in GV after adjustment of covariates (all P<0·05). Our study showed that LI+MR led to significantly greater improvements in GV compared with LI, suggesting that LI+MR could be an effective treatment to alleviate glucose excursions.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Yannian Wang ◽  
Fenfen Wei ◽  
Changqing Sun ◽  
Quanzhong Li

Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People’s Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3377
Author(s):  
Omorogieva Ojo ◽  
Xiao-Hua Wang ◽  
Osarhumwese Osaretin Ojo ◽  
Amanda Rodrigues Amorim Adegboye

The use of nutritional interventions for managing diabetes is one of the effective strategies aimed at reducing the global prevalence of the condition, which is on the rise. Almonds are the most consumed tree nut and they are known to be rich sources of protein, monounsaturated fatty acids, essential minerals, and dietary fibre. Therefore, the aim of this review was to evaluate the effects of almonds on gut microbiota, glycometabolism, and inflammatory parameters in patients with type 2 diabetes. Methods: This systematic review and meta-analysis was carried out according to the preferred reporting items for systematic review and meta-analysis (PRISMA). EBSCOhost, which encompasses the Health Sciences Research Databases; Google Scholar; EMBASE; and the reference lists of articles were searched based on population, intervention, control, outcome, and study (PICOS) framework. Searches were carried out from database inception until 1 August 2021 based on medical subject headings (MesH) and synonyms. The meta-analysis was carried out with the Review Manager (RevMan) 5.3 software. Results: Nine randomised studies were included in the systematic review and eight were used for the meta-analysis. The results would suggest that almond-based diets have significant effects in promoting the growth of short-chain fatty acid (SCFA)-producing gut microbiota. Furthermore, the meta-analysis showed that almond-based diets were effective in significantly lowering (p < 0.05) glycated haemoglobin (HbA1c) levels and body mass index (BMI) in patients with type 2 diabetes. However, it was also found that the effects of almonds were not significant (p > 0.05) in relation to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and Tumour necrosis factor α, TNF-α), glucagon-like peptide-1 (GLP-1), homeostatic model assessment of insulin resistance (HOMA–IR), and fasting insulin. The biological mechanisms responsible for the outcomes observed in this review in relation to reduction in HbA1c and BMI may be based on the nutrient composition of almonds and the biological effects, including the high fibre content and the low glycaemic index profile. Conclusion: The findings of this systematic review and meta-analysis have shown that almond-based diets may be effective in promoting short-chain fatty acid-producing bacteria and lowering glycated haemoglobin and body mass index in patients with type 2 diabetes compared with control. However, the effects of almonds were not significant (p > 0.05) with respect to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin.


2006 ◽  
Vol 9 (2) ◽  
pp. 182-186 ◽  
Author(s):  
Min-Jung Kang ◽  
Jung-In Kim ◽  
Sang-Yeon Yoon ◽  
Jae Cherl Kim ◽  
In-June Cha

Sign in / Sign up

Export Citation Format

Share Document