Potential for Pricing Policies in Water Resource Management: Estimation of Urban Residential Water Demand in Zaragoza, Spain

Urban Studies ◽  
2006 ◽  
Vol 43 (13) ◽  
pp. 2421-2442 ◽  
Author(s):  
Fernando Arbues ◽  
Inmaculada Villanua
2014 ◽  
Vol 11 (7) ◽  
pp. 8239-8298 ◽  
Author(s):  
A. Nazemi ◽  
H. S. Wheater

Abstract. Human activities have caused various changes in the Earth System, and hence, the interconnections between humans and the Earth System should be recognized and reflected in models that simulate the Earth System processes. One key anthropogenic activity is water resource management that determines the dynamics of human–water interactions in time and space. There are various reasons to include water resource management in Earth System models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human–water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Here, we divide the water resource management into two interdependent elements, related to water demand as well as water supply and allocation. In this paper, we survey the current literature on how various water demands have been included in large-scale models, including Land Surface Schemes and Global Hydrological Models. The available algorithms are classified based on the type of demand, mode of simulation and underlying modeling assumptions. We discuss the pros and cons of available algorithms, address various sources of uncertainty and highlight limitations in current applications. We conclude that current capability of large-scale models in terms of representing human water demands is rather limited, particularly with respect to future projections and online simulations. We argue that current limitations in simulating various human demands and their impact on the Earth System are mainly due to the uncertainties in data support, demand algorithms and large-scale models. To fill these gaps, the available models, algorithms and data for representing various water demands should be systematically tested, intercompared and improved and human water demands should be considered in conjunction with water supply and allocation, particularly in the face of water scarcity and unknown future climate.


Agromet ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 89
Author(s):  
I Putu Santikayasa ◽  
. Agis ◽  
Siti Maesaroh

<p>The use of economic approach on water allocation are inclusively becoming integrated on water resource management. Competing among water users is expected to escalate due to increasing water demand despite of limited water availability. This research used economic approach aiming to optimize water allocation in Ambang-Brantas subbasin, Malang, and to calculate the total benefit for different sectors of allocated water. We distinguished two scenarios (2012–2015 and 2016–2035) to reflect the existing and the future water allocation. We modelled the water allocation with the Aquarious application. In this subbasin, three main sectors of water users were identified i.e. domestic, agriculture, and industries. The results showed that the agricultural sector was the highest water demand compared to other sectors. This finding was consistent both monthly and annually. Our findings revealed that industries sector show the maximum benefit per unit water used. Based on the scenario, either a decreasing water availability by 10% or an increasing water demand by 10% will decline the total benefit by 44%. If we increase the scenario to 20% it will reduce the total benefit until 71%. This modelling exercise using Aquarius application shows that the model is a promising tool for water resource management with integration of economic approach.</p>


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1714 ◽  
Author(s):  
Haibo Jiang ◽  
Chunguang He ◽  
Wenbo Luo ◽  
Haijun Yang ◽  
Lianxi Sheng ◽  
...  

Habitat loss is a key factor affecting Siberian crane stopovers. The accurate calculation of water supply and effective water resource management schemes plays an important role in stopover habitat restoration for the Siberian crane. In this paper, the ecological water demand was calculated and corrected by developing a three-dimensional model. The results indicated that the calculated minimum and optimum ecological water demand values for the Siberian crane were 2.47 × 108 m3~3.66 × 108 m3 and 4.96 × 108 m3~10.36 × 108 m3, respectively, in the study area. After correction with the three-dimensional model, the minimum and optimum ecological water demand values were 3.75 × 108 m3 and 5.21 × 108 m3, respectively. A water resource management scheme was established to restore Siberian crane habitat. Continuous, area-specific and simulated flood water supply options based on water diversions were used to supply water. The autumn is the best season for area-specific and simulating flood water supply. These results can serve as a reference for protecting other waterbirds and restoring wetlands in semi-arid areas.


Author(s):  
Arezoo Boroomandnia ◽  
Omid Bozorg-Haddad ◽  
Jimmy Yu ◽  
Mariam Darestani

Abstract Fast-growing water demand, population growth, global climate change, and water quality deterioration all drive scientists to apply novel approaches to water resource management. Nanotechnology is one of the state-of-the-art tools in scientists’ hands which they can use to meet human water needs via reuse of water and utilizing unconventional water resources. Additionally, monitoring water supply systems using new nanomaterials provides more efficient water distribution networks. In this chapter, we consider the generic concepts of nanotechnology and its effects on water resources management strategies. A wide range of nanomaterials and nanotechnologies, including nano-adsorbents, nano-photocatalysts, and nano-membranes, are introduced to explain the role of nanotechnology in providing new water resources to meet growing demand. Also, nanomaterial application as a water alternative in industry, reducing water demand in the industrial sector, is presented. Another revolution made by nanomaterials, also discussed in this chapter, is their use in water supply systems for monitoring probable leakage and leakage reduction. Finally, we present case studies that clarify the influence of nanotechnology on water resources and their management strategies. These case studies prove the importance and inevitable application of nanotechnology to satisfy the rising water demand in the modern world, and show the necessity of nanotechnology awareness for today's water experts.


SIMULATION ◽  
2021 ◽  
pp. 003754972098425
Author(s):  
Arfa Saleem ◽  
Imran Mahmood ◽  
Hessam Sarjoughian ◽  
Hasan Arshad Nasir ◽  
Asad Waqar Malik

Increased usage and non-efficient management of limited resources has created the risk of water resource scarcity. Due to climate change, urbanization, and lack of effective water resource management, countries like Pakistan are facing difficulties coping with the increasing water demand. Rapid urbanization and non-resilient infrastructures are the key barriers in sustainable urban water resource management. Therefore, there is an urgent need to address the challenges of urban water management through effective means. We propose a workflow for the modeling and simulation of sustainable urban water resource management and develop an integrated framework for the evaluation and planning of water resources in a typical urban setting. The proposed framework uses the Water Evaluation and Planning system to evaluate current and future water demand and the supply gap. Our simulation scenarios demonstrate that the demand–supply gap can effectively be dealt with by dynamic resource allocation, in the presence of assumptions, for example, those related to population and demand variation with the change of weather, and thus work as a tool for informed decisions for supply management. In the first scenario, 23% yearly water demand is reduced, while in the second scenario, no unmet demand is observed due to the 21% increase in supply delivered. Similarly, the overall demand is fulfilled through 23% decrease in water demand using water conservation. Demand-side management not only reduces the water usage in demand sites but also helps to save money, and preserve the environment. Our framework coupled with a visualization dashboard deployed in the water resource management department of a metropolitan area can assist in water planning and effective governance.


2016 ◽  
Vol 11 (2) ◽  
pp. 433-447 ◽  
Author(s):  
Stephanie A. Tanverakul ◽  
Juneseok Lee

Residential water demand has been extensively studied over more than four decades, but as yet there is no consensus on the best or most appropriate model from a practical perspective. Conservation and sustainability programs with new metering incentives have increased the necessity for an easy to use forecasting model for water resource management based on a better understanding of the factors driving residential water demand. Analytical techniques have increased in complexity, advancing with new tools for computing and data collection such as GIS and remote sensing. This paper presents a decadal review of how the residential water demand analysis have evolved over time with changes in price policies, conservation attitudes, technological improvements, and other factors explaining water demand. This paper will help provide the knowledge base for the future studies and recommendations are made for addressing/bridging the gap between drinking water industry and research community.


2021 ◽  
Vol 13 (15) ◽  
pp. 8609
Author(s):  
Sarah Bunney ◽  
Elizabeth Lawson ◽  
Sarah Cotterill ◽  
David Butler

Water resource management in the UK is multifaceted, with a complexity of issues arising from acute and chronic stressors. Below average rainfall in spring 2020 coincided with large-scale changes to domestic water consumption patterns, arising from the first UK-wide COVID-19 lockdown, resulting in increased pressure on nationwide resources. A sector wide survey, semi-structured interviews with sector executives, meteorological data, water resource management plans and market information were used to evaluate the impact of acute and chronic threats on water demand in the UK, and how resilience to both can be increased. The COVID-19 pandemic was a particularly acute threat: water demand increased across the country, it was unpredictable and hard to forecast, and compounding this, below average rainfall resulted in some areas having to tanker in water to ‘top up’ the network. This occurred in regions of the UK that are ‘water stressed’ as well as those that are not. We therefore propose a need to look beyond ‘design droughts’ and ‘dry weather average demand’ to characterise the management and resilience of future water resources. As a sector, we can learn from this acute threat and administer a more integrated approach, combining action on the social value of water, the implementation of water trading and the development of nationwide multi-sectoral resilience plans to better respond to short and long-term disruptors.


2012 ◽  
Vol 2 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Mahender Choudhary ◽  
Ruchika Sharma ◽  
Sudhir Kumar

Water demand forecasting has become an essential ingredient in effective water resource planning and management. In water-scare urban areas of developing countries, this emphasis on accurate forecasting is particularly important for effective water resource planning and management. This paper presents an econometric water demand model for forecasting future residential water requirements for a densely populated area of Jaipur city. This study used an ordinary least squared (OLS) regression model to measured the impact of household income (I), age of respondent (A_R), household size (SIZE), age of home (A_H), wealth (W), asset score (AS), dwelling status (DWELL), monthly expenditure on water supply (EXP_WS), number of bathrooms (BATHR), and number of rooms (RMS) on residential water use (RWU) using data from a survey of 149 representative households in the study area. Empirical results indicate that residential water demand of the study area is characterized by I, SIZE, AS, and EXP_WS, with SIZE (0.542) and AS (0.418) having a major influence on RWU, as shown by their high standardized model coefficient values at 95% confidence intervals. Therefore major saving should be achieved by technological developments in water efficient appliances combined with education in efficient use of water.


Sign in / Sign up

Export Citation Format

Share Document