Integrated Control of Active Rear Wheel Steering and Direct Yaw Moment Control

1997 ◽  
Vol 27 (5-6) ◽  
pp. 357-370 ◽  
Author(s):  
MASAO NAGAI ◽  
YUTAKA HIRANO ◽  
SACHIKO YAMANAKA
Author(s):  
Ling Yu ◽  
Sunan Yuan

In order to improve the stability and safety of vehicles, it is necessary to control them. In this study, the integrated control method of drive-by-wire independent drive electric vehicle was studied. Firstly, the reference model of electric vehicle was established. Then, an integrated control method of acceleration slip regulation (ARS) and direct yaw moment control (DYC) was designed for controlling the nonlinearity of tyre, and the simulation experiment was carried out under the environment of MATLAB/SIMULINK. The results showed that the vehicle lost its stability when it was uncontrolled; under the control of a single DYC controller, r and β values got some control, but the vehicle stability was still low; under the integrated control of ARS+DYC, the vehicle stability was significantly improved; under the integrated control method, the overshoot, regulation time and steady-state error of the system were all small. Under the simulation of extreme conditions, the integrated control method also showed excellent performance, which suggested the method was reliable. The experimental results suggests the effectiveness of the integrated control method, which makes some contributions to the further research of the integrated control of electric vehicles.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chao Lu ◽  
Jing Yuan ◽  
Genlong Zha

This paper has investigated an integrated control of active front steering (AFS) and direct yaw-moment control (DYC) for vehicle systems. First of all, the desired yaw rate and sideslip angle are estimated by using a two-degree-of-freedom (2-DOF) model of the vehicle system. On this basis, the actual sideslip angle is estimated by means of an observer. Then, the sliding mode control (SMC) is developed for AFS and DYC, respectively, to guarantee that the actual yaw rate and the sideslip angle track their reference signals. Additionally, the disturbance observer (DOB) technique is introduced to further improve the control performance. Finally, the simulation results validate the superiority of the AFS and DYC integrated control by using CarSim software during the following conditions: double lane change and side wind disturbance.


Author(s):  
Avesta Goodarzi ◽  
Fereydoon Diba ◽  
Ebrahim Esmailzadeh

Basically, there are two main techniques to control the vehicle yaw moment. First method is the indirect yaw moment control, which works on the basis of active steering control (ASC). The second one being the direct yaw moment control (DYC), which is based on either the differential braking or the torque vectoring. An innovative idea for the direct yaw moment control is introduced by using an active controller system to supervise the lateral dynamics of vehicle and perform as an active yaw moment control system, denoted as the stabilizer pendulum system (SPS). This idea has further been developed, analyzed, and implemented in a standalone direct yaw moment control system, as well as, in an integrated vehicle dynamic control system with a differential braking yaw moment controller. The effectiveness of SPS has been evaluated by model simulation, which illustrates its superior performance especially on low friction roads.


Vehicles ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 127-144
Author(s):  
Andoni Medina ◽  
Guillermo Bistue ◽  
Angel Rubio

Direct Yaw Moment Control (DYC) is an effective way to alter the behaviour of electric cars with independent drives. Controlling the torque applied to each wheel can improve the handling performance of a vehicle making it safer and faster on a race track. The state-of-the-art literature covers the comparison of various controllers (PID, LPV, LQR, SMC, etc.) using ISO manoeuvres. However, a more advanced comparison of the important characteristics of the controllers’ performance is lacking, such as the robustness of the controllers under changes in the vehicle model, steering behaviour, use of the friction circle, and, ultimately, lap time on a track. In this study, we have compared the controllers according to some of the aforementioned parameters on a modelled race car. Interestingly, best lap times are not provided by perfect neutral or close-to-neutral behaviour of the vehicle, but rather by allowing certain deviations from the target yaw rate. In addition, a modified Proportional Integral Derivative (PID) controller showed that its performance is comparable to other more complex control techniques such as Model Predictive Control (MPC).


2018 ◽  
Vol 41 (9) ◽  
pp. 2428-2440 ◽  
Author(s):  
Jiaxu Zhang ◽  
Jing Li

This paper presents an integrated vehicle chassis control (IVCC) strategy to improve vehicle handling and stability by coordinating active front steering (AFS) and direct yaw moment control (DYC) in a hierarchical way. In high-level control, the corrective yaw moment is calculated by the fast terminal sliding mode control (FTSMC) method, which may improve the transient response of the system, and a non-linear disturbance observer (NDO) is used to estimate and compensate for the model uncertainty and external disturbance to suppress the chattering of FTSMC. In low-level control, the null-space-based control reallocation method and inverse tyre model are utilized to transform the corrective yaw moment to the desired longitudinal slips and the steer angle increment of front wheels by considering the constraints of actuators and friction ellipse of each wheel. Finally, the performance of the proposed control strategy is verified through simulations of various manoeuvres based on vehicle dynamic software CarSim.


Sign in / Sign up

Export Citation Format

Share Document