A Sliding Mode Controller for Wheel Slip Ratio Control System

1997 ◽  
Vol 27 (5-6) ◽  
pp. 393-408 ◽  
Author(s):  
TAKETOSHI KAWABE ◽  
MASAO NAKAZAWA ◽  
IKURO NOTSU ◽  
YOSHITO WATANABE
2020 ◽  
Author(s):  
Lin He ◽  
Cheng Yao ◽  
Zejia He ◽  
Bingzhao Gao ◽  
Qin Shi

Abstract Due to large torque and quick response of electric motor, the traction wheels of battery electric vehicle (BEV) are easy to slip during the initial phase of starting. In this paper, an acceleration slip regulation approach based on sliding mode control algorithm is proposed to prevent the wheel slip of BEV. The traction wheel slip ratio is used as the control parameter, and a sliding mode controller is deduced from it. A fuzzy algorithm is employed to revise the switch function of sliding mode controller. After stability and robustness analysis, the sliding mode controller is validated by dynamic simulation of BEV. The sliding mode control law is transferred into vehicle control unit and is veried by road tests, the results of which show that the sliding mode controller is a good candidate to prevent the wheel slip.


2011 ◽  
Vol 34 (4) ◽  
pp. 388-400 ◽  
Author(s):  
A Zargari ◽  
R Hooshmand ◽  
M Ataei

One of the main problems in small hydro-power plants that are locally used is their frequency control system. In this paper, a suggested control system based on the fuzzy sliding mode controller is presented for controlling the network frequency. Also, the proposed control strategy is compared with a PI controller and conventional sliding mode controller. In order to regulate the membership functions of fuzzy system more accurately, the particle swarm optimization algorithm is also applied. Moreover, because of unavailability of the control system variables, an estimator is suggested for estimating and identifying the system variables. This estimator will reduce the costs of implementing the control method. The simulation results show the ability of controller system in controlling the local network frequency in the presence of load and parameter’s variations.


Author(s):  
Trong-Thang Nguyen

In this research, the author presents the model of the two-link robot arm and its dynamic equations. Based on these dynamic equations, the author builds the sliding mode controller for each joint of the robot. The tasks of the controllers are controlling the Torque in each Joint of the robot in order that the angle coordinates of each link coincide with the desired values. The proposed algorithm and robot model are built on Matlab-Simulink to investigate the system quality. The results show that the quality of the control system is very high: the response angles of each link quickly reach the desired values, and the static error equal to zero.


2015 ◽  
Vol 18 (3) ◽  
pp. 174-182 ◽  
Author(s):  
Minh Ngoc Vu ◽  
Minh Cao Ta

This paper presents a slip suppression controller using sliding mode control method for electric vehicles which aims to improve the control performance of Evs in both driving and braking mode. In this method, a sliding mode controller is designed to obtain the maximum driving force by suppressing the slip ratio. The numerical simulations for one wheel model under variations in mass of vehicle and road condition are performed and demonstrated to show the effectiveness of the proposed method.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2501 ◽  
Author(s):  
Jinhong Sun ◽  
Xiangdang Xue ◽  
Ka Wai Eric Cheng

With the development of in-wheel technology (IWT), the design of the electric vehicles (EV) is getting much improved. The anti-lock braking system (ABS), which is a safety benchmark for automotive braking, is particularly important. Installing the braking motor at each fixed position of the wheel improves the intelligent control of each wheel. The nonlinear ABS with robustness performance is highly needed during the vehicle’s braking. The anti-lock braking controller (CAB) designed in this paper considered the well-known adhesion force, the resistance force from air and the wheel rolling friction force, which bring the vehicle model closer to the real situation. A sliding mode wheel slip ratio controller (SMWSC) is proposed to yield anti-lock control of wheels with an adaptive sliding surface. The vehicle dynamics model is established and simulated with consideration of different initial braking velocities, different vehicle masses and different road conditions. By comparing the braking effects with various CAB parameters, including stop distance, braking torque and wheel slip ratio, the SMWSC proposed in this paper has superior fast convergence and stability characteristics. Moreover, this SMWSC also has an added road-detection module, which makes the proposed braking controller more intelligent. In addition, the important brain of this proposed ABS controller is the control algorithm, which can be used in all vehicles’ ABS controller design.


Author(s):  
Alireza Marzbanrad ◽  
Fredrik Bruzelius ◽  
Bengt Jacobson ◽  
Edo Frederik Drenth

Sign in / Sign up

Export Citation Format

Share Document