Phytochemical-induced changes in gene expression of carcinogen-metabolizing enzymes in cultured human primary hepatocytes

Xenobiotica ◽  
2004 ◽  
Vol 34 (7) ◽  
pp. 619-632 ◽  
Author(s):  
K. Gross-Steinmeyer ◽  
P. L. Stapleton ◽  
F. Liu ◽  
J. H. Tracy ◽  
T. K. Bammler ◽  
...  
Planta Medica ◽  
2018 ◽  
Vol 85 (01) ◽  
pp. 6-13
Author(s):  
Sameega Abrahams ◽  
Sedicka Samodien ◽  
Mariska Lilly ◽  
Elizabeth Joubert ◽  
Wentzel Gelderblom

AbstractModulation of the expression of hepatic and renal genes encoding xenobiotic metabolizing enzymes by an aspalathin-enriched green rooibos (Aspalathus linearis) extract (GRE) was investigated in the liver and kidneys of F344 rats following dietary exposure of 28 d, as well as selected xenobiotic metabolizing genes in rat primary hepatocytes. In the liver, GRE upregulated genes (p < 0.05) encoding aldehyde dehydrogenase, glucose phosphate isomerase, and cytochrome P450 while 17β-hydroxysteroid dehydrogenase 2 (Hsd17β2) was downregulated. In primary hepatocytes, GRE lacked any effect, while aspalathin downregulated Hsd17β2, mimicking the effect of GRE in vivo, and upregulated catechol-O-methyl transferase and marginally (p < 0.1) cytochrome P450 2e1. In the kidneys, GRE upregulated (p < 0.05) genes encoding the phase II xenobiotic metabolism enzymes, glutathione-S-transferase mµ and microsomal glutathione-S-transferase, while downregulating genes encoding the ATP binding cassette transporter, cytochrome P450, gamma glutamyltransferase 1, and N-acetyltransferase 1. Differential modulation of the expression of xenobiotic metabolizing genes in vivo and in vitro by GRE is dose-related, duration of exposure, the tissue type, and interactions between specific polyphenol and/or combinations thereof. Aspalathin is likely to be responsible for the downregulation of estradiol and testosterone catabolism by GRE in the liver. The differential gene expression by GRE in the liver and kidneys could, depending on the duration exposure and dose utilized, determine the safe use of such an extract in humans for specific health and/or disease outcomes.


1999 ◽  
Vol 277 (2) ◽  
pp. E352-E360 ◽  
Author(s):  
Joseph M. Dhahbi ◽  
Patricia L. Mote ◽  
John Wingo ◽  
John B. Tillman ◽  
Roy L. Walford ◽  
...  

We characterized the effects of calorie restriction (CR) on the expression of key glycolytic, gluconeogenic, and nitrogen-metabolizing enzymes in mice. Of the gluconeogenic enzymes investigated, liver glucose-6-phosphatase mRNA increased 1.7- and 2.3-fold in young and old CR mice. Phospho enolpyruvate carboxykinase mRNA and activity increased 2.5- and 1.7-fold in old CR mice. Of the key glycolytic enzymes, pyruvate kinase mRNA and activity decreased ∼60% in CR mice. Hepatic phosphofructokinase-1 and pyruvate dehydrogenase mRNA decreased 10–20% in CR mice. Of the genes that detoxify ammonia generated from protein catabolism, hepatic glutaminase, carbamyl phosphate synthase I, and tyrosine aminotransferase mRNAs increased 2.4-, 1.8-, and 1.8-fold with CR, respectively. Muscle glutamine synthetase mRNA increased 1.3- and 2.1-fold in young and old CR mice. Hepatic glutamine synthetase mRNA and activity each decreased 38% in CR mice. These CR-induced changes are consistent with other studies suggesting that CR may decrease enzymatic capacity for glycolysis and increase the enzymatic capacity for hepatic gluconeogenesis and the disposal of byproducts of muscle protein catabolism.


PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0236392
Author(s):  
Shauna D. O’Donovan ◽  
Kurt Driessens ◽  
Daniel Lopatta ◽  
Florian Wimmenauer ◽  
Alexander Lukas ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3381
Author(s):  
Zhihui Li ◽  
Linhao Li ◽  
Scott Heyward ◽  
Shuaiqian Men ◽  
Meishu Xu ◽  
...  

Phenobarbital (PB), a widely used antiepileptic drug, is known to upregulate the expression of numerous drug-metabolizing enzymes and transporters in the liver primarily via activation of the constitutive androstane receptor (CAR, NR1I3). The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter, plays an important role in intracellular citrate homeostasis that is associated with a number of metabolic syndromes and neurological disorders. Here, we show that PB markedly elevates the expression of SLC13A5 through a pregnane X receptor (PXR)-dependent but CAR-independent signaling pathway. In human primary hepatocytes, the mRNA and protein expression of SLC13A5 was robustly induced by PB treatment, while genetic knockdown or pharmacological inhibition of PXR significantly attenuated this induction. Utilizing genetically modified HepaRG cells, we found that PB induces SLC13A5 expression in both wild type and CAR-knockout HepaRG cells, whereas such induction was fully abolished in the PXR-knockout HepaRG cells. Mechanistically, we identified and functionally characterized three enhancer modules located upstream from the transcription start site or introns of the SLC13A5 gene that are associated with the regulation of PXR-mediated SLC13A5 induction. Moreover, metformin, a deactivator of PXR, dramatically suppressed PB-mediated induction of hepatic SLC13A5 as well as its activation of the SLC13A5 luciferase reporter activity via PXR. Collectively, these data reveal PB as a potent inducer of SLC13A5 through the activation of PXR but not CAR in human primary hepatocytes.


2013 ◽  
Author(s):  
Husna Zulkipli ◽  
Norita Salim ◽  
Gabriele Anisah Froemming ◽  
Aletza Mohd Ismail ◽  
Hapizah Nawawi

Sign in / Sign up

Export Citation Format

Share Document