scholarly journals Dose-Dependent Effects of Gamma Irradiation on the Materials Properties and Cell Proliferation of Electrospun Polycaprolactone Tissue Engineering Scaffolds

2015 ◽  
Vol 64 (10) ◽  
pp. 526-533 ◽  
Author(s):  
Robin Augustine ◽  
Abhijit Saha ◽  
V. P. Jayachandran ◽  
Sabu Thomas ◽  
Nandakumar Kalarikkal
2005 ◽  
Vol 475-479 ◽  
pp. 2379-2382 ◽  
Author(s):  
Hong Song Fan ◽  
Xian Tao Wen ◽  
Yan Fei Tan ◽  
R. Wang ◽  
H.D. Cao ◽  
...  

In recent years, electrospinning process is gradually applied in producing tissue-engineering scaffold. In this study, we chose polylacticacid(PLA) and β-tertiary calcium phosphate(β-TCP) as raw materials to fabricate PLA/β-TCP biodegradable composite scaffold by electrospinning process. The characteristics of the scaffold and effect of the scaffolds to cell proliferation and cell adhesion was studied. Compare with pure PLA scaffold, blendingβ-TCP in the spinning process of the scaffold could improve the properties of the scaffold, especially the hydrophilicity and the proliferation and adhesion of cells, this means that the material is more potential to be used as tissue engineering scaffolds.


2019 ◽  
Author(s):  
AS Arampatzis ◽  
K Theodoridis ◽  
E Aggelidou ◽  
KN Kontogiannopoulos ◽  
I Tsivintzelis ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2011 ◽  
Vol 17 (21-22) ◽  
pp. 2583-2592 ◽  
Author(s):  
Jessica A. DeQuach ◽  
Shauna H. Yuan ◽  
Lawrence S.B. Goldstein ◽  
Karen L. Christman

Sign in / Sign up

Export Citation Format

Share Document