Performance and emission study of a single cylinder diesel engine fuelled with n-octanol/WPO with some modifications

Author(s):  
D. Damodharan ◽  
K. Gopal ◽  
A. P. Sathiyagnanam ◽  
B. Rajesh Kumar ◽  
Melvin Victor Depoures ◽  
...  
Author(s):  
V. Anandram ◽  
S. Ramakrishnan ◽  
J. Karthick ◽  
S. Saravanan ◽  
G. LakshmiNarayanaRao

In the present work, the combustion, performance and emission characteristics of sunflower oil, sunflower methyl ester and its blends were studied and compared with diesel by employing them as fuel in a single cylinder, direct injection, 4.4 KW, air cooled diesel engine. Emission measurements were carried out using five-gas exhaust gas analyzer and smoke meter. The performance characteristics of Sunflower oil, Sunflower methyl ester and its blends were comparable with those of diesel. The components of exhaust such as HC, CO, NOx and soot concentration of the fuels were measured and presented as a function of load and it was observed that the blends had similar performance and emission characteristics as those of diesel. NOx emissions of sunflower oil methyl ester were slightly higher than that of diesel but that of sunflower oil was slightly lower than that of diesel. With respect to the combustion characteristics it was found that the biofuels have lower ignition delay than diesel. The heat release rate was very high for diesel than for the biofuel.


Author(s):  
P M Bhatt

Increasing industrialization and motorization led to a significant rise in demand of petroleum products. As these are the non-renewable resources, it will be troublesome to predict the availability of these resources in the future, resulting in uncertainty in its supply and price and is impacting growing economies like India importing 80% of the total demand of the petroleum products. Many attempts have been made by different researchers to find out alternate fuels for Internal Combustion engines. Many alternate fuels like Biodiesel, LPG (Liquefied Petroleum Gas), CNG (Compressed Natural Gas) and Alcohol are being used nowadays by different vehicles. In this context pyrolysis of scrap tyres can be used effectively to produce oil, thereby solving the problem of waste tyre disposal. In the present study, Experimental investigations were carried out to evaluate the performance and emission characteristics of a single cylinder diesel engine fueled by TPO10, TPO15, and TPO20 at a crank angle 280 before TDC (Top Dead Centre) and injection pressure of 180 bar keeping the blend quality by controlling the density and viscosity of tyre pyrolysis oil within permissible limit of euro IV diesel requirement. The performance and emission results were analyzed and compared with that of diesel fuel operation. The results of investigations indicate that the brake thermal efficiency of the TPO - DF blend decreases by 4 to 8%. CO emissions are slightly higher but within permissible limit of euro IV emission standards. HC emissions are higher by about 40 to 60% at partial load whereas smoke opacity is lower by about 14% to 22% as compared to diesel fuel.


2019 ◽  
Vol 969 ◽  
pp. 421-426
Author(s):  
G. Jayabalaji ◽  
P. Shanmughasundaram

In this present investigation titanium dioxide (TiO2) nano-fluid was blended with aphanizomenon flos (AF) biodiesel (20%)-diesel (80%) blend. Different percentages of TiO2 such as 5%, 10%, and 15%, was added with AF-D (aphanizomenon flos-diesel) blends. The blends are named as AFD-5TiO2, AFD-10TiO2, and AFD-15TiO2. The performance and emission parameters of a single cylinder CI engine fueled with AFD-TiO2 blends were experimentally investigated. The results reveal that, with the use of TiO2 nano particles, AFD-10TiO2 blend gave optimum results. BSFC decreased by about 5% and BTE increased by about 2% with the addition of TiO2 nano-particle as a catalyst. The tailpipe emissions such as CO, HC, smoke reduced drastically, but the NO emission increased, with the use of TiO2 nano-particles.


2014 ◽  
Vol 984-985 ◽  
pp. 839-844
Author(s):  
Natesan Kanthavelkumaran ◽  
P. Seenikannan

In present scenario researchers focusing the alternate sources of petroleum products. Based on this, current research work focused the emission study of its characteristics and potential as a substitute for Diesel fuel in CI engines. Current research biodiesel is produced by base catalyzed transesterification of rice bran oil is known as Rice Bran Oil Methyl Ester (Biofuel). In this research various proportions of Biofuel and Diesel are prepared on volume basis. It is used as fuels in a four stroke single cylinder direct injection Diesel engine to study the performance and emission characteristics of these fuels. Varieties of results obtained, that shows around 50% reduction in smoke, 33% reduction in HC and 38% reduction in CO emissions. In result discussion a different blends of the brake power and BTE are reduced nearly 2 to 3% and 3 to 4% respectively around 5% increase in the SFC. Therefore it is accomplished from the this experimental work that the blends of Biofuel and Diesel fuel can successfully be used in Diesel engines as an alternative fuel without any modification in the engine. It is also environment friendly blended fuel by the various emission standards.


Sign in / Sign up

Export Citation Format

Share Document