Comparative analysis for fouling characteristics of river water, secondary effluent, and humic acid solution in ceramic membrane ultrafiltration

2017 ◽  
Vol 52 (13) ◽  
pp. 2199-2211 ◽  
Author(s):  
Jeong-Woo Son ◽  
Eun-Hye Sim ◽  
Nag-Choul Choi ◽  
Song-Bae Kim ◽  
Cheon-Young Park
2021 ◽  
Vol 233 ◽  
pp. 01049
Author(s):  
YANG Yanqing ◽  
QIU Yan ◽  
LIU Yanhui ◽  
ZHAO Yan ◽  
LI jing ◽  
...  

Ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to its advantageous properties over conventional polymeric membrane. The ceramic membrane processes are a rapidly emerging technology for water treatment, yet virtually no information on the performance and fouling mechanisms diatomite ceramic membrane. In this study, filtration experiments were carried out using a mixture of humic acid and kaolin which simulated surface water under constant pressure to reveal fouling characteristics of the filtration of the diatomite ceramic membrane. The results showed that the removal rate of VU254 was 52%~70%, and turbidity was 90%~95% when treat mixed water of 5-10mg/L kaolin and humic acid. And membrane surface retention and membrane pore adsorption were the mainly removal routes. And the flux slowly decreases, rapidly decreases, gradually decreases and stabilizes were three processes of diatomite ceramic membrane fouling. And the first and third stages of membrane fouling mainly caused by complete blocking, and the second stage was mainly controlled by standard blocking. The study found that humic acid would cause both the pore blocking and the fouling of the membrane surface when turbidity was present, especially the membrane surface pollution, it was the major factor of diatomite ceramic membrane fouling.


2008 ◽  
Vol 58 (6) ◽  
pp. 1193-1198 ◽  
Author(s):  
S. Vinitnantharat ◽  
W. Chartthe ◽  
A. Pinisakul

Textile wastewater normally has a visible color although it has low concentration. This may affect the aquatic ecosystem. Two dyestuffs, Reactive Red 141 (RR141) and Basic Red14 (BR14) were used as compound models. RR 141 is an anionic dye which has a big molecule whereas BR 14 is a cationic dye and has a small molecule. The target organisms for toxicity test were green algae (Chlorella sp.) and waterfleas (Moina macrocopa). The effect of humic acid on the toxicity of dyestuffs to test organisms was also investigated. From the observation of cell counts, Chlorophyll a and dry weight of algae in the dye solutions for 4 days, it was found that all parameters increased as times increased. This revealed that algae could utilize dyestuffs as a carbon source. However, BR14 gave higher absorbance than RR141 at the wavelength of 430 nm which competed to the Chlorophyll a for algal photosynthesis. This resulted in the 96-h EC50 of BR14 and RR141 to Chlorella sp. were 10.88 and 95.55 mg/L, respectively. As for dye toxicity to waterfleas, the 48-h LC50 of BR14 and RR141 to waterfleas were 4.91 and 18.26 mg/L, respectively. The high toxicity of BR14 to waterfleas related to the small molecule of dye could pass into the cell and was absorbed by organelles of waterfleas. Toxicity of BR14 in humic acid solution to Chlorella sp. showed less toxic than RR141 in humic acid solution. This dues to the negative charge of humic acid could bound with a positive charge of BR14, resulted in low amount of BR14 remaining in the bulk solution. The toxicity of BR14 and RR141 in humic acid solution to waterfleas was increased as humic acid increased. Hence, the proper treatment of textile wastewater to yield low concentration of dyes in the effluent before discharging to the natural water is needed.


Author(s):  
Lili Song ◽  
Bo Zhu ◽  
Veeriah Jegatheesan ◽  
Stephen R. Gray ◽  
Mikel C. Duke ◽  
...  

Desalination ◽  
2012 ◽  
Vol 292 ◽  
pp. 73-86 ◽  
Author(s):  
M. Pontié ◽  
A. Thekkedath ◽  
K. Kecili ◽  
H. Dach ◽  
F. De Nardi ◽  
...  
Keyword(s):  

2011 ◽  
Vol 63 (10) ◽  
pp. 2427-2433 ◽  
Author(s):  
R. H. Peiris ◽  
H. Budman ◽  
C. Moresoli ◽  
R. L. Legge

Identifying the extent of humic acid (HA)-like and fulvic acid (FA)-like natural organic matter (NOM) present in natural water is important to assess disinfection by-product formation and fouling potential during drinking water treatment applications. However, the unique fluorescence properties related to HA-like NOM is masked by the fluorescence signals of the more abundant FA-like NOM. For this reason, it is not possible to accurately characterize HA-like and FA-like NOM components in a single water sample using direct fluorescence EEM analysis. A relatively simple approach is described here that demonstrates the feasibility of using a fluorescence excitation-emission matrix (EEM) approach for identifying HA-like and FA-like NOM fractions in water when used in combination with a series of pH adjustments and filtration steps. It is demonstrated that the fluorescence EEMs of HA-like and FA-like NOM fractions from the river water sample possessed different spectral properties. Fractionation of HA-like and FA-like NOM prior to fluorescence analysis is therefore proposed as a more reasonable approach.


Sign in / Sign up

Export Citation Format

Share Document