Optimal renewing free-maintenance warranty period and preventive replacement age for repairable products

Author(s):  
Chin-Chih Changa
Author(s):  
BERMAWI P. ISKANDAR ◽  
HIROAKI SANDOH

This study discusses an opportunity-based age replacement policy for a system which has a warranty period (0, S]. When the system fails at its age x≤S, a minimal repair is performed. If an opportunity occurs to the system at its age x for S<x<T, we take the opportunity with probability p to preventively replace the system, while we conduct a corrective replacement when it fails on (S, T). Finally if its age reaches T, we execute a preventive replacement. Under this replacement policy, the design variable is T. For the case where opportunities occur according to a Poisson process, a long-run average cost of this policy is formulated under a general failure time distribution. It is, then, shown that one of the sufficient conditions where a unique finite optimal T* exists is that the failure time distribution is IFR (Increasing Failure Rate). Numerical examples are also presented for the Weibull failure time distribution.


Author(s):  
Anggis Sagitarisman ◽  
Aceng Komarudin Mutaqin

AbstractCar manufacturers in Indonesia need to determine reasonable warranty costs that do not burden companies or consumers. Several statistical approaches have been developed to analyze warranty costs. One of them is the Gertsbakh-Kordonsky method which reduces the two-dimensional warranty problem to one dimensional. In this research, we apply the Gertsbakh-Kordonsky method to estimate the warranty cost for car type A in XYZ company. The one-dimensional data will be tested using the Kolmogorov-Smirnov to determine its distribution and the parameter of distribution will be estimated using the maximum likelihood method. There are three approaches to estimate the parameter of the distribution. The difference between these three approaches is in the calculation of mileage for units that do not claim within the warranty period. In the application, we use claim data for the car type A. The data exploration indicates the failure of car type A is mostly due to the age of the vehicle. The Kolmogorov-Smirnov shows that the most appropriate distribution for the claim data is the three-parameter Weibull. Meanwhile, the estimated using the Gertsbakh-Kordonsky method shows that the warranty costs for car type A are around 3.54% from the selling price of this car unit without warranty i.e. around Rp. 4,248,000 per unit.Keywords: warranty costs; the Gertsbakh-Kordonsky method; maximum likelihood estimation; Kolmogorov-Smirnov test.                                   AbstrakPerusahaan produsen mobil di Indonesia perlu menentukan biaya garansi yang bersifat wajar tidak memberatkan perusahaan maupun konsumen. Beberapa pendekatan statistik telah dikembangkan untuk menganalisis biaya garansi. Salah satunya adalah metode Gertsbakh-Kordonsky yang mereduksi masalah garansi dua dimensi menjadi satu dimensi. Pada penelitian ini, metode Gertsbakh-Kordonsky akan digunakan untuk mengestimasi biaya garansi untuk mobil tipe A pada perusahaan XYZ. Data satu dimensi hasil reduksi diuji kecocokan distribusinya menggunakan uji kecocokan Kolmogorov-Smirnov dan taksiran parameter distribusinya menggunakan metode penaksir kemungkinan maksimum. Ada tiga pendekatan yang digunakan untuk menaksir parameter distribusi. Perbedaan dari ketiga pendekatan tersebut terletak pada perhitungan jarak tempuh untuk unit yang tidak melakukan klaim dalam periode garansi. Sebagai bahan aplikasi, kami menggunakan data klaim unit mobil tipe A. Hasil eksplorasi data menunjukkan bahwa kegagalan mobil tipe A lebih banyak disebabkan karena faktor usia kendaraan. Hasil uji kecocokan distribusi untuk data hasil reduksi menunjukkan bahwa distribusi yang cocok adalah distribusi Weibull 3-parameter. Sementara itu, hasil perhitungan taksiran biaya garansi menunjukan bahwa taksiran biaya garansi untuk unit mobil tipe A sekitar 3,54% dari harga jual unit mobil tipe A tanpa garansi, atau sekitar Rp. 4.248.000,- per unit.Kata Kunci: biaya garansi; metode Gertsbakh-Kordonsky; penaksiran kemungkinan maksimum; uji Kolmogorov-Smirnov.


2001 ◽  
Vol 38 (02) ◽  
pp. 386-406 ◽  
Author(s):  
Bernd Heidergott

We consider a multicomponent maintenance system controlled by an age replacement policy: when one of the components fails, it is immediately replaced; all components older than a threshold age θ are preventively replaced. Costs are associated with each maintenance action, such as replacement after failure or preventive replacement. We derive a weak derivative estimator for the derivative of the cost performance with respect to θ. The technique is quite general and can be applied to many other threshold optimization problems in maintenance. The estimator is easy to implement and considerably increases the efficiency of a Robbins-Monro type of stochastic approximation algorithm. The paper is self-contained in the sense that it includes a proof of the correctness of the weak derivative estimation algorithm.


2021 ◽  
Vol 16 (12) ◽  
pp. 45-52
Author(s):  
P. L. Likhter

Today, large companies are increasingly using controversial strategies related to the violation of the buyer’s rights to repair the goods both during and after the expiration of the warranty period. This is primarily manifested in the restriction of access to the necessary information on the product repairing, hindering the work of independent service organizations, intentional complication of parts during their design, unreasonably high degree of integration of units, lack of a sufficient number of spare parts on the market, etc. As a rule, such actions distort the principles of integrity and transparency, which, in turn, entails risks to consumer and environmental safety. This issue is of particular relevance in the context of the COVID-19 pandemic, when sellers of medical equipment restrict the possibility of its restoration by independent specialists, and also prevent the distribution of the necessary software. Based on the results of the work, it is concluded that it is advisable to establish boundaries for the conduct of market participants to stimulate the production of durable and maintainable goods in order to transit to a circular economy.


2001 ◽  
Vol 33 (1) ◽  
pp. 206-222 ◽  
Author(s):  
Xiaoyue Jiang ◽  
Viliam Makis ◽  
Andrew K. S. Jardine

In this paper, we study a maintenance model with general repair and two types of replacement: failure and preventive replacement. When the system fails a decision is made whether to replace or repair it. The repair degree that affects the virtual age of the system is assumed to be a random function of the repair-cost and the virtual age at failure time. The system can be preventively replaced at any time before failure. The objective is to find the repair/replacement policy minimizing the long-run expected average cost per unit time. It is shown that a generalized repair-cost-limit policy is optimal and the preventive replacement time depends on the virtual age of the system and on the length of the operating time since the last repair. Computational procedures for finding the optimal repair-cost limit and the optimal average cost are developed. This model includes many well-known models as special cases and the approach provides a unified treatment of a wide class of maintenance models.


Sign in / Sign up

Export Citation Format

Share Document