Whole Blueberry Powder Inhibits Metastasis of Triple Negative Breast Cancer in a Xenograft Mouse Model Through Modulation of Inflammatory Cytokines

2013 ◽  
Vol 66 (2) ◽  
pp. 242-248 ◽  
Author(s):  
Noriko Kanaya ◽  
Lynn Adams ◽  
Ayano Takasaki ◽  
Shiuan Chen
2021 ◽  
Vol 22 (19) ◽  
pp. 10775
Author(s):  
Tatiana J. Carneiro ◽  
Rita Araújo ◽  
Martin Vojtek ◽  
Salomé Gonçalves-Monteiro ◽  
Ana L. M. Batista de Carvalho ◽  
...  

The interest in palladium(II) compounds as potential new anticancer drugs has increased in recent years, due to their high toxicity and acquired resistance to platinum(II)-derived agents, namely cisplatin. In fact, palladium complexes with biogenic polyamines (e.g., spermine, Pd2Spm) have been known to display favorable antineoplastic properties against distinct human breast cancer cell lines. This study describes the in vivo response of triple-negative breast cancer (TNBC) tumors to the Pd2Spm complex or to cisplatin (reference drug), compared to tumors in vehicle-treated mice. Both polar and lipophilic extracts of tumors, excised from a MDA-MB-231 cell-derived xenograft mouse model, were characterized through nuclear magnetic resonance (NMR) metabolomics. Interestingly, the results show that polar and lipophilic metabolomes clearly exhibit distinct responses for each drug, with polar metabolites showing a stronger impact of the Pd(II)-complex compared to cisplatin, whereas neither drug was observed to significantly affect tumor lipophilic metabolism. Compared to cisplatin, exposure to Pd2Spm triggered a higher number of, and more marked, variations in some amino acids, nucleotides and derivatives, membrane precursors (choline and phosphoethanolamine), dimethylamine, fumarate and guanidine acetate, a signature that may be relatable to the cytotoxicity and/or mechanism of action of the palladium complex. Putative explanatory biochemical hypotheses are advanced on the role of the new Pd2Spm complex in TNBC metabolism.


Nanoscale ◽  
2018 ◽  
Vol 10 (34) ◽  
pp. 16307-16313 ◽  
Author(s):  
Richard D. Lin ◽  
Nicole F. Steinmetz

Tobacco mosaic virus-nanoparticle encapsulation of the topoisomerase II inhibitor mitoxantrone enables therapy in a mouse model of triple negative breast cancer.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Madhuchhanda Kundu ◽  
Sumita Raha ◽  
Avik Roy ◽  
Kalipada Pahan

Although some therapies are available for regular breast cancers, there are very few options for triple-negative breast cancer (TNBC). Here, we demonstrated that serum level of IL-12p40 monomer (p40) was much higher in breast cancer patients than healthy controls. On the other hand, levels of IL-12, IL-23 and p40 homodimer (p402) were lower in serum of breast cancer patients as compared to healthy controls. Similarly, human TNBC cells produced greater level of p40 than p402. The level of p40 was also larger than p402 in serum of a patient-derived xenograft (PDX) mouse model. Accordingly, neutralization of p40 by p40 mAb induced death of human TNBC cells and tumor shrinkage in PDX mice. While investigating the mechanism, we found that neutralization of p40 led to upregulation of human CD4+IFNγ+ and CD8+IFNγ+ T cell populations, thereby increasing the level of human IFNγ and decreasing the level of human IL-10 in PDX mice. Finally, we demonstrated the infiltration of human cytotoxic T cells, switching of tumor-associated macrophage M2 (TAM2) to TAM1 and suppression of transforming growth factor β (TGFβ) in tumor tissues of p40 mAb-treated PDX mice. Our studies identify a possible new immunotherapy for TNBC in which p40 mAb inhibits tumor growth in PDX mice.


2020 ◽  
Author(s):  
Anjana Bhardwaj ◽  
Matthew D. Embury ◽  
Raniv D. Rojo ◽  
Constance Albarracin ◽  
Isabelle Bedrosian

Sign in / Sign up

Export Citation Format

Share Document