Sampling biases of small non-volant mammals (Mammalia: Rodentia and Didelphimorphia) surveys in Paraná state, Brazil

Author(s):  
Alan Deivid Pereira ◽  
Juliano André Bogoni ◽  
Micaela Heloise Siqueira ◽  
Ricardo Siqueira Bovendorp ◽  
Ana Paula Vidotto-Magnoni ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hailing Jia ◽  
Xiaoyan Ma ◽  
Fangqun Yu ◽  
Johannes Quaas

AbstractSatellite-based estimates of radiative forcing by aerosol–cloud interactions (RFaci) are consistently smaller than those from global models, hampering accurate projections of future climate change. Here we show that the discrepancy can be substantially reduced by correcting sampling biases induced by inherent limitations of satellite measurements, which tend to artificially discard the clouds with high cloud fraction. Those missed clouds exert a stronger cooling effect, and are more sensitive to aerosol perturbations. By accounting for the sampling biases, the magnitude of RFaci (from −0.38 to −0.59 W m−2) increases by 55 % globally (133 % over land and 33 % over ocean). Notably, the RFaci further increases to −1.09 W m−2 when switching total aerosol optical depth (AOD) to fine-mode AOD that is a better proxy for CCN than AOD. In contrast to previous weak satellite-based RFaci, the improved one substantially increases (especially over land), resolving a major difference with models.


Palaeontology ◽  
2015 ◽  
Vol 58 (3) ◽  
pp. 521-536 ◽  
Author(s):  
Terri J. Cleary ◽  
Benjamin C. Moon ◽  
Alexander M. Dunhill ◽  
Michael J. Benton

2018 ◽  
Author(s):  
Marcus A. M. de Aguiar ◽  
Erica A. Newman ◽  
Mathias M. Pires ◽  
Justin D. Yeakel ◽  
David H. Hembry ◽  
...  

AbstractThe structure of ecological interactions is commonly understood through analyses of interaction networks. However, these analyses may be sensitive to sampling biases in both the interactors (the nodes of the network) and interactions (the links between nodes), because the detectability of species and their interactions is highly heterogeneous. These issues may affect the accuracy of empirically constructed ecological networks. Yet statistical biases introduced by sampling error are difficult to quantify in the absence of full knowledge of the underlying ecological network’s structure. To explore properties of large-scale modular networks, we developed EcoNetGen, which constructs and samples networks with predetermined topologies. These networks may represent a wide variety of communities that vary in size and types of ecological interactions. We sampled these networks with different sampling designs that may be employed in field observations. The observed networks generated by each sampling process were then analyzed with respect to the number of components, size of components and other network metrics. We show that the sampling effort needed to estimate underlying network properties accurately depends both on the sampling design and on the underlying network topology. In particular, networks with random or scale-free modules require more complete sampling to reveal their structure, compared to networks whose modules are nested or bipartite. Overall, the modules with nested structure were the easiest to detect, regardless of sampling design. Sampling according to species degree (number of interactions) was consistently found to be the most accurate strategy to estimate network structure. Conversely, sampling according to module (representing different interaction types or taxa) results in a rather complete view of certain modules, but fails to provide a complete picture of the underlying network. We recommend that these findings be incorporated into field sampling design of projects aiming to characterize large species interactions networks to reduce sampling biases.Author SummaryEcological interactions are commonly modeled as interaction networks. Analyses of such networks may be sensitive to sampling biases and detection issues in both the interactors and interactions (nodes and links). Yet, statistical biases introduced by sampling error are difficult to quantify in the absence of full knowledge of the underlying network’s structure. For insight into ecological networks, we developed software EcoNetGen (available in R and Python). These allow the generation and sampling of several types of large-scale modular networks with predetermined topologies, representing a wide variety of communities and types of ecological interactions. Networks can be sampled according to designs employed in field observations. We demonstrate, through first uses of this software, that underlying network topology interacts strongly with empirical sampling design, and that constructing empirical networks by starting with highly connected species may be the give the best representation of the underlying network.


2017 ◽  
Vol 93 (2) ◽  
pp. 611-639 ◽  
Author(s):  
Alex Dornburg ◽  
ElisabethJ Forrestel ◽  
JonA Moore ◽  
TeresaL Iglesias ◽  
Andrew Jones ◽  
...  

2014 ◽  
Vol 8 (3) ◽  
pp. 1069-1086 ◽  
Author(s):  
S. Lhermitte ◽  
J. Abermann ◽  
C. Kinnard

Abstract. Both satellite and ground-based broadband albedo measurements over rough and complex terrain show several limitations concerning feasibility and representativeness. To assess these limitations and understand the effect of surface roughness on albedo, firstly, an intrasurface radiative transfer (ISRT) model is combined with albedo measurements over different penitente surfaces on Glaciar Tapado in the semi-arid Andes of northern Chile. Results of the ISRT model show effective albedo reductions over the penitentes up to 0.4 when comparing the rough surface albedo relative to the albedo of the flat surface. The magnitude of these reductions primarily depends on the opening angles of the penitentes, but the shape of the penitentes and spatial variability of the material albedo also play a major role. Secondly, the ISRT model is used to reveal the effect of using albedo measurements at a specific location (i.e., apparent albedo) to infer the true albedo of a penitente field (i.e., effective albedo). This effect is especially strong for narrow penitentes, resulting in sampling biases of up to ±0.05. The sampling biases are more pronounced when the sensor is low above the surface, but remain relatively constant throughout the day. Consequently, it is important to use a large number of samples at various places and/or to locate the sensor sufficiently high in order to avoid this sampling bias of surface albedo over rough surfaces. Thirdly, the temporal evolution of broadband albedo over a penitente-covered surface is analyzed to place the experiments and their uncertainty into a longer temporal context. Time series of albedo measurements at an automated weather station over two ablation seasons reveal that albedo decreases early in the ablation season. These decreases stabilize from February onwards with variations being caused by fresh snowfall events. The 2009/2010 and 2011/2012 seasons differ notably, where the latter shows lower albedo values caused by larger penitentes. Finally, a comparison of the ground-based albedo observations with Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer)-derived albedo showed that both satellite albedo products capture the albedo evolution with root mean square errors of 0.08 and 0.15, respectively, but also illustrate their shortcomings related to temporal resolution and spatial heterogeneity over small mountain glaciers.


2020 ◽  
Vol 7 (12) ◽  
Author(s):  
Baijun Tian ◽  
Thomas Hearty
Keyword(s):  

2018 ◽  
Vol 5 (3) ◽  
pp. 171830 ◽  
Author(s):  
Terri J. Cleary ◽  
Roger B. J. Benson ◽  
Susan E. Evans ◽  
Paul M. Barrett

Lepidosauria is a speciose clade with a long evolutionary history, but there have been few attempts to explore its taxon richness through time. Here we estimate patterns of terrestrial lepidosaur genus diversity for the Triassic–Palaeogene (252–23 Ma), and compare observed and sampling-corrected richness curves generated using Shareholder Quorum Subsampling and classical rarefaction. Generalized least-squares regression (GLS) is used to investigate the relationships between richness, sampling and environmental proxies. We found low levels of richness from the Triassic until the Late Cretaceous (except in the Kimmeridgian–Tithonian of Europe). High richness is recovered for the Late Cretaceous of North America, which declined across the K–Pg boundary but remained relatively high throughout the Palaeogene. Richness decreased following the Eocene–Oligocene Grande Coupure in North America and Europe, but remained high in North America and very high in Europe compared to the Late Cretaceous; elsewhere data are lacking. GLS analyses indicate that sampling biases (particularly, the number of fossil collections per interval) are the best explanation for long-term face-value genus richness trends. The lepidosaur fossil record presents many problems when attempting to reconstruct past diversity, with geographical sampling biases being of particular concern, especially in the Southern Hemisphere.


2019 ◽  
Vol 43 (2) ◽  
pp. 260-281 ◽  
Author(s):  
Andrew J Neverman ◽  
Ian C Fuller ◽  
Jon N Procter ◽  
Russell G Death

Terrestrial laser scanning (TLS) and structure-from-motion photogrammetry (SfMp) offer rapid, non-invasive surveying of in situ gravels. Numerous studies have used the point clouds derived from TLS or SfMp to quantify surface layer characteristics, but direct comparison of the methods for grain-scale analysis has received relatively little attention to date. Comparing equivalent products of different data capture methods is critical as differences in errors and sampling biases between the two methods may produce different outputs, effecting further analysis. The sampling biases and errors related to SfMp and TLS lead to differences in the point clouds produced by each method. The metrics derived from the point clouds are therefore likely to differ, potentially leading to different inputs for entrainment threshold models, different trends in surface layer development being identified and different trajectories for physical processes and habitat quality being predicted. This paper provides a direct comparison between TLS and SfMp surveys of an exposed gravel bar for three different survey periods following inundation and reworking of the bar surface during high flow events. The point clouds derived from the two methods are used to describe changes in the character of the surface layer between bar inundation events, and comparisons are made with descriptions derived from conventional pebble counts. The results found differences in the metrics derived using each method do exist, but the grid resolution used to detrend the surfaces and identify spatial variations in surface layer characteristics had a greater impact than survey method. Further research is required to understand the significance of these variations for quantifying surface texture and structure and for predicting entrainment thresholds and transport rates.


Sign in / Sign up

Export Citation Format

Share Document