The effect of denture cleansers on surface roughness and bond strength of a denture base resin‏

2016 ◽  
Vol 31 (2) ◽  
pp. 171-181
Author(s):  
Sabit Melih Ates ◽  
Ipek Caglar ◽  
Alper Ozdogan ◽  
Zeynep Yesil Duymus
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohammed M. Gad ◽  
Reem Abualsaud ◽  
Shaimaa M. Fouda ◽  
Ahmed Rahoma ◽  
Ahmad M. Al-Thobity ◽  
...  

Statement of Problem. Novel polymethyl methacrylate (PMMA) containing zirconium dioxide nanoparticles (nano-ZrO2) was suggested as a denture base material but there is a lack of information regarding denture cleanser effects. Objectives. This study aimed to evaluate denture cleanser effects on color stability, surface roughness, and hardness of PMMA denture base resin reinforced with nano-ZrO2. Materials and Methods. A total of 420 specimens were fabricated of unreinforced and nano-ZrO2 reinforced acrylic resin at 2.5% and 5%, resulting in 3 main groups. These groups were further subdivided (n = 10) according to immersion solution (distilled water, Corega, sodium hypochlorite, and Renew) and immersion duration. Surface roughness, hardness, and color were measured at baseline (2 days-T0) in distilled water and then after 180 and 365 days of immersion (T1 & T2) in water or denture cleansing solutions. Data was collected and analyzed using two-way ANOVA followed by Bonferroni post hoc test (α = 0.05). Results. Surface roughness increased significantly after denture cleanser immersion of unmodified and nano-ZrO2-modified PMMA materials while hardness decreased ( P < 0.001 ). The denture cleansers significantly affected the color of both PMMA denture bases ( P < 0.001 ). The immersion time in denture cleansers significantly affected all tested properties ( P < 0.001 ). Within denture cleansers, NaOCl showed the highest adverse effects ( P < 0.05 ) while Renew showed the least adverse effects. Conclusion. Denture cleansers can significantly result in color change and alter the surface roughness and hardness of denture base resin even with ZrO2 nanoparticles addition. Therefore, they should be carefully used.


2019 ◽  
Vol 17 (1) ◽  
pp. 228080001982779 ◽  
Author(s):  
Ozgun Yusuf Ozyilmaz ◽  
Ceyda Akin

Introduction: We assessed the effect of different available denture cleansers on the roughness and hardness of polyetherketoneketone, thermoinjection-molded polyamide, and polymethylmethacrylate. Materials and Methods: A total of 150 disc-shaped specimens were fabricated (10 mm × 2 mm) from these three denture base resins, and divided into five subgroups ( n = 10) according to immersion procedures. One of these groups subjected to distilled water served as control, whereas other groups were subjected to daily cleansing with four denture cleansers (Corega, Protefix, Curaprox, and Perlodent) for 8 h a day for 140 days. The surface roughness and hardness values of specimens were recorded by measuring twice at baseline, and again after application of chemical solutions. Topography alterations after treatments were assessed with scanning electron microscopy. The data were subjected to statistical analysis and comparison among groups was done using Kruskal Wallis and Wilcoxon Signed Ranks tests. P-value <0.05 was considered significant. Results: The surface roughness of polyetherketoneketone, polymethylmethacrylate, and polyamide dentures was increased significantly by chemical solutions of denture cleansers. While the hardness value of polyetherketoneketone was not affected significantly after immersion in denture cleansers, those of polymethylmethacrylate and polyamide decreased significantly. Compared with Curaprox, the effervescent tablets significantly altered the surface hardness and roughness of polyamide. Conclusion: Denture cleansers can considerably alter the surface roughness and hardness of denture base resins and should be used carefully depending on the material.


2015 ◽  
Vol 26 (2) ◽  
pp. 163 ◽  
Author(s):  
HamidrezaRajati Haghi ◽  
Nafiseh Asadzadeh ◽  
Rasul Sahebalam ◽  
Mohammadreza Nakhaei ◽  
JamalZamani Amir

2018 ◽  
Vol 11 (4) ◽  
pp. 2181-2190
Author(s):  
Humam M. Al-somaiday ◽  
M. A. Mohammed Moudhaffer ◽  
Mahmood Jasim Alsamydai

One of the major problem affecting the denture function is the detachment of the artificial teeth from denture as a result to the higher chewing capacity that will rise the risk of artificial teeth displacement. Displacement of the teeth may precede by changing in the material properties affecting the denture function that is why surface roughness and hardness considered as a predictor for the material behaviors and performance. Replacing a denture may cause a burden to the patients, hence, the material and fabrication coasts of dentures should be considered as one of the major factors affecting the selection of the denture base material, as in some cases a base material with impressive propertied limitedly used because of its expenses.[1] In this study, shear bond strength with acrylic teeth, hardness, surface roughness and the net benefits, associated with alternatives for achieving defined treatment objective, were evaluated by comparing some properties of three different denture base materials with the cost of each one in Iraq. A total of (90) specimens of polycarbonate, injectable acrylic and conventional heat cured acrylic were fabricated according to manufacturer’s instructions and divided into (3) groups, (30) specimens for each testing group i.e. the shear bond strength with acrylic teeth, shore D hardness and surface roughness (10 specimens for each testing material). the total cost of each specimens group was collected and calculated to evaluate the overall cost benefit of each material. Highly significant differences (P≤ 0.01) between all the (3) experimental materials were noticed after analyzing each test's results with descriptive statistical analysis, one-way ANOVA and post-hoc LSD, except for the shore D hardness whereas a non-significant differences(P> 0.05) between heat cured and injectable acrylic was found. The heat cured acrylic has the highest mean value of the shear bond strength with acrylic teeth (516.1 N) followed by the injectable acrylic with (329.9 N) mean value while the lowest mean value was for the Polycarbonate (180.1 N). Furthermore, the injectable acrylic has the highest mean value in shore D hardness (91.96), followed by the heat cured acrylic (91.5), then Polycarbonate (82.94). As for surface roughness, the Polycarbonate has the highest mean value (0.31703) followed by the injectable acrylic (0.2129), then the heat cured acrylic (0.10367). Finally, Polycarbonate has the highest mean value of the specimens’ cost in Iraq (10.022 US dollar /specimens), followed by the injectable acrylic (8.695 US dollar /specimens) then the heat cured acrylic (3.243 US dollar /specimens). All thermoplastic materials included in this study (Injectable acrylic and Polycarbonate) exhibited higher cost with lower properties in comparison with heat cured acrylic material for the selected tests.


2019 ◽  
Vol 30 (6) ◽  
pp. 920
Author(s):  
AmirAli Reza Khaledi ◽  
FarzanehSadat Fatemi ◽  
Mahroo Vojdani ◽  
Sorour Mohammadi

Sign in / Sign up

Export Citation Format

Share Document