Electrophotography toner adhesion on agro-industrial residue and invasive plant papers

Author(s):  
Igor Karlovits ◽  
Gregor Lavrič ◽  
Urška Kavčič ◽  
Vladimir Zorić
2014 ◽  
Vol 32 (2) ◽  
pp. 212-213
Author(s):  
E. K. Espeland
Keyword(s):  

2021 ◽  
pp. 1-24
Author(s):  
Chad F. Hammer ◽  
John S. Gunn

Abstract Non-native invasive plant species are a major cause of ecosystem degradation and impairment of ecosystem service benefits in the United States. Forested riparian areas provide many ecosystem service benefits and are vital to maintaining water quality of streams and rivers. These systems are also vulnerable to natural disturbances and invasion by non-native plants. We assessed whether planting native trees on disturbed riparian sites may increase biotic resistance to invasive plant establishment in central Vermont in the northeastern United States. The density (stems/m2) of invasive stems was higher in non-planted sites (x̄=4.1 stems/m2) compared to planted sites (x̄=1.3 stems/m2). More than 90% of the invasive plants were Japanese knotweed (Fallopia japonica). There were no significant differences in total stem density of native vegetation between planted and non-planted sites. Other measured response variables such as native tree regeneration, species diversity, soil properties and soil function showed no significant differences or trends in the paired riparian study sites. The results of this case study indicate that tree planting in disturbed riparian forest areas may assist conservation efforts by minimizing the risk of invasive plant colonization.


Author(s):  
Hua Xu ◽  
Ping Chang ◽  
Shaoshan Li ◽  
Jianguo Lu ◽  
Xuejun Lin ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanshan Zhong ◽  
Xiaodan Lu ◽  
Zhiwei Deng ◽  
Ziqing Lu ◽  
Minghui Fu

Abstract Background Glutamine synthetase (GS) acts as a key enzyme in plant nitrogen (N) metabolism. It is important to understand the regulation of GS expression in plant. Promoters can initiate the transcription of its downstream gene. Eichhornia crassipes is a most prominent aquatic invasive plant, which has negative effects on environment and economic development. It also can be used in the bioremediation of pollutants present in water and the production of feeding and energy fuel. So identification and characterization of GS promoter in E. crassipes can help to elucidate its regulation mechanism of GS expression and further to control its N metabolism. Results A 1232 bp genomic fragment upstream of EcGS1b sequence from E. crassipes (EcGS1b-P) has been cloned, analyzed and functionally characterized. TSSP-TCM software and PlantCARE analysis showed a TATA-box core element, a CAAT-box, root specific expression element, light regulation elements including chs-CMA1a, Box I, and Sp1 and other cis-acting elements in the sequence. Three 5′-deletion fragments of EcGS1b upstream sequence with 400 bp, 600 bp and 900 bp length and the 1232 bp fragment were used to drive the expression of β-glucuronidase (GUS) in tobacco. The quantitative test revealed that GUS activity decreased with the decreasing of the promoter length, which indicated that there were no negative regulated elements in the EcGS1-P. The GUS expressions of EcGS1b-P in roots were significantly higher than those in leaves and stems, indicating EcGS1b-P to be a root-preferential promoter. Real-time Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis of EcGS1b gene also showed higher expression in the roots of E.crassipes than in stems and leaves. Conclusions EcGS1b-P is a root-preferential promoter sequence. It can specifically drive the transcription of its downstream gene in root. This study will help to elucidate the regulatory mechanisms of EcGS1b tissue-specific expression and further study its other regulatory mechanisms in order to utilize E.crassipes in remediation of eutrophic water and control its overgrowth from the point of nutrient metabolism.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 773
Author(s):  
Ilona Szumańska ◽  
Sandra Lubińska-Mielińska ◽  
Dariusz Kamiński ◽  
Lucjan Rutkowski ◽  
Andrzej Nienartowicz ◽  
...  

Invasive alien species (IAS) is a global problem that largely relates to human activities and human settlements. To prevent the further spread of IAS, we first need to know their pattern of distribution, to determine which constitutes the greatest threat, and understand which habitats and migration pathways they prefer. Our research aimed to identify the main vectors and distribution pattern of IAS of plants in the city environment. We checked the relations between species distribution and such environmental factors as urban soil type and habitat type. We applied data on IAS occurrence (collected in the period 1973–2015) in 515 permanent plots with dimensions of 0.5 × 0.5 km and analyzed by direct ordination methods. In total, we recorded 66 IAS. We found a 27% variance in the IAS distribution pattern, which can be explained by statistically significant soil and habitat types. The most important for species distribution were: river and alluvial soils, forests and related rusty soils, and places of intensive human activities, including areas of urbisols and industriosols. Our results provide details that can inform local efforts for the management and control of invasive species, and they provide evidence of the different associations between natural patterns and human land use.


2021 ◽  
Vol 167 ◽  
pp. 113476
Author(s):  
Ricardo Almeida ◽  
Fernando Cisneros ◽  
Cátia V.T. Mendes ◽  
Maria Graça V.S. Carvalho ◽  
Maria G. Rasteiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document