POTATO TUBER YIELD AND QUALITY AS AFFECTED BY RATES AND SOURCES OF POTASSIUM FERTILIZER

2012 ◽  
Vol 35 (5) ◽  
pp. 664-677 ◽  
Author(s):  
M. Zameer Khan ◽  
M. Ehsan Akhtar ◽  
M. Mahmood-ul-Hassan ◽  
M. Masud Mahmood ◽  
M. Naeem Safdar
2013 ◽  
Vol 59 (6) ◽  
pp. 889-897 ◽  
Author(s):  
Ali Eskandari ◽  
Hamid Reza Khazaie ◽  
Ahmad Nezami ◽  
Mohammad Kafi ◽  
Abbas Majdabadi ◽  
...  

2011 ◽  
Vol 122 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Feng-Xin Wang ◽  
Xiu-Xia Wu ◽  
Clinton C. Shock ◽  
Li-Yun Chu ◽  
Xiao-Xiao Gu ◽  
...  

2012 ◽  
Vol 22 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Samuel Y.C. Essah ◽  
Jorge A. Delgado ◽  
Merlin Dillon ◽  
Richard Sparks

There is the need to develop potato (Solanum tuberosum) cropping systems with higher yields and crop quality. Field studies were conducted with cover crops grown under limited irrigation (<8 inches) to assess the effects of certain types of cover crops on potato tuber yield and quality. On a commercial farm operation before the 2006 and 2007 potato season, mustard (Brassica sp.), canola (Brassica napus), and two cultivars of sorghum-sudangrass (Sorghum bicolor × S. sudanense) were planted. A wet fallow ground treatment where no cover crop was planted was used as a control. Before the 2008 season, barley (Hordeum vulgare), barley plus applied compost, sunflower (Helianthus annus), pea (Pisum sativum), and annual ryegrass (Lolium multiflorum) cover crops were added. The results of these 2006–08 studies showed that cover crops have the potential to increase potato tuber yield and quality, as measured by tuber size (larger tubers) and appearance (e.g., tubers with reduced defects such as cracks, knobs, and misshapes). In 2 of the 3 years, most of the cover crops, especially sorghum-sudangrass, increased yields and tuber quality. Positive results from sorghum-sudangrass suggest there is potential to harvest hay from cover crops and still obtain tuber benefits.


2007 ◽  
Vol 93 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Christian Bugge Henriksen ◽  
Jens Peter Mølgaard ◽  
Jesper Rasmussen

1976 ◽  
Vol 86 (2) ◽  
pp. 251-255
Author(s):  
D. C. E. Wurr

SummaryApplication of methyl decanoate to a potato crop about the time of tuber initiation reduced the total yield and the yield of tubers in the grade 2·5–5·5 cm though neither of these reductions were significant. However, application of 2,3,5-triiodobenzoic acid increased the yield of tubers 2·5–5·5 cm by up to 20% while having no significant effect on total tuber yield. This change in the tuber size distribution was due to a more even partition of photosynthate between tubers and not to an increase in the total number of tubers.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1749
Author(s):  
Xiaoyan Gu ◽  
Yang Liu ◽  
Na Li ◽  
Yihong Liu ◽  
Deqiang Zhao ◽  
...  

Potassium (K) has a significant effect on wheat yield and quality. Owing to the limitations of irrigation and production costs, soil-based applications of potassium fertilizer are not performed in wheat production on the Loess Plateau of China. In the late growth stage of wheat, potassium deficiency occurs even under sufficient nitrogen/phosphorus (N/P) levels, so it is necessary to supplement potassium through foliar spraying. However, there are few studies on the effect of the foliar application of potassium fertilizer (KFA) on wheat quality. Field experiments were conducted at two experimental sites for 2 years to study the effects of different potassium fertilizer application levels and periods on wheat yield and quality. The results showed that KFA had no significant effect on the yield of the wheat variety Xinong 20 (XN20) but increased the yield of the wheat variety Xiaoyan 22 (XY22). The improvement effect of KFA on the wet gluten content and stabilization time (ST) of XN20 was better than that on these parameters of XY22, while the sedimentation value (SV) and formation time (FT) showed the opposite trend. KFA significantly reduced the albumin content of the two varieties but had no significant effect on the globulin content. Compared with that at the other two stages, the potassium application in the form of potash fertilizer spray at a concentration of 60 mmol L−1 (K2) at the flowering stage (BBCH 65) significantly increased the protein content, wet gluten content, SV and gluten protein content in XN20 grains, whereas the application at 10 days after flowering (AA10, BBCH 71) at the K2 concentration was more beneficial to prolonging the dough FT. For XY22, the application of potassium fertilizer at the K2 concentration at the flowering stage increased the wet gluten and gluten protein levels and dough development time. There were significant genotypic differences in the composition and content of HMW-GS between the two varieties. KFA significantly increased the levels of the 1, 7 + 8, and 4 + 12 subunits in XN20 and the 1 subunit in XY22, but had no significant effect on the 2 + 12 subunit in XY22. Partial least squares path modelling (PLS-PM) analysis showed that the processing quality indexes (SV, FT, ST) and gluten protein and HMW-GS levels were regulated by the potassium fertilizer foliar spraying stage and concentration and revealed in part that KFA affected the processing quality by affecting the HMW-GS content.


Sign in / Sign up

Export Citation Format

Share Document