Phosphorus‐deficiency effects on response of symbiotic N2fixation and carbohydrate status in soybean to atmospheric CO2enrichment

1998 ◽  
Vol 21 (10) ◽  
pp. 2207-2218 ◽  
Author(s):  
Tongmin Sa ◽  
Daniel W. Israel
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 522c-522
Author(s):  
Anuradha Tatineni ◽  
Sonja L. Maki ◽  
Nihal C. Rajapakse

Interest in the use of non- (or less) chemical methods to reduce the height of ornamental crops has increased tremendously. Manipulation of greenhouse light quality is one alternative for plant growth regulation. We have shown that eliminating far-red light from the greenhouse environment with liquid CuSO4 spectral filters is effective in reducing the height of a wide range of plants though plant carbohydrate status is also altered under CuSO4 filter. In previous studies, application of GA3 reversed both the reduction of plant height and carbohydrate status of CuSO4 spectral filter grown plants. It has been proposed that GAs enhance the activity of the enzyme sucrose phosphate synthase to regulate carbohydrate levels. In the present study the role of exogenously applied GA19, GA1, and GA3 in overcoming the reduction of plant height and carbohydrate levels was investigated. Chrysanthemum plants were treated weekly for 4 weeks with saturating doses of GA19, GA1 and GA3 (25 μg) or the growth retardants paclobutrazol and prohexadione. GA1 was also applied with paclobutrazol and prohexadione to assess whether response to GAs is altered under CuSO4 filter. GA1 and GA3 promoted growth similarly under control or CuSO4 filter. GA19 was least effective in promoting growth under CuSO4 filter. In summary, these results suggest that gibberellin physiology is altered under spectral filters with the conversion of GA19 a possible point of regulation. The correlation between the carbohydrate status and the growth of the plants will be discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 337
Author(s):  
Feng Li ◽  
Ning Zhang ◽  
Yulei Zhang ◽  
Qingsheng Lian ◽  
Caiying Qin ◽  
...  

Natural astaxanthin helps reduce the negative effects caused by oxidative stress and other related factors, thereby minimizing oxidative damage. Therefore, it has considerable potential and broad application prospects in human health and animal nutrition. Haematococcus pluvialis is considered to be the most promising cell factory for the production of natural astaxanthin. Previous studies have confirmed that nonmotile cells of H. pluvialis are more tolerant to high intensity of light than motile cells. Cultivating nonmotile cells as the dominant cell type in the red stage can significantly increase the overall astaxanthin productivity. However, we know very little about how to induce nonmotile cell formation. In this work, we first investigated the effect of phosphorus deficiency on the formation of nonmotile cells of H. pluvialis, and then investigated the effect of NaCl on the formation of nonmotile cells under the conditions of phosphorus deficiency. The results showed that, after three days of treatment with 0.1% NaCl under phosphorus deficiency, more than 80% of motile cells had been transformed into nonmotile cells. The work provides the most efficient method for the cultivation of H. pluvialis nonmotile cells so far, and it significantly improves the production of H. pluvialis astaxanthin.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 568
Author(s):  
Md. Motiar Rohman ◽  
Md. Robyul Islam ◽  
Mahmuda Binte Monsur ◽  
Mohammad Amiruzzaman ◽  
Masayuki Fujita ◽  
...  

This study is undertaken to elucidate the role of trehalose (Tre) in mitigating oxidative stress under salinity and low P in maize. Eight-day-old maize seedlings of two maize varieties, BARI Hybrid Maize-7 and BARI Hybrid Maize-9, were subjected to salinity (150 mM NaCl), low P (5 µM KH2PO4) and their combined stress with or without 10 mM Tre for 15 d. Salinity and combined stress significantly inhibited the shoot length, root length, and root volume, whereas low P increased the root length and volume in both genotypes. Exogenous Tre in the stress treatments increased all of the growth parameters as well as decreased the salinity, low P, and combined stress-mediated Na+/K+, reactive oxygen species (ROS), malondialdehyde (MDA), lipoxygenase (LOX) activity, and methylglyoxal (MG) in both genotypes. Individually, salinity and low P increased superoxide dismutase (SOD) activity in both genotypes, but combined stress decreased the activity. Peroxidase (POD) activity increased in all stress treatments. Interestingly, Tre application enhanced the SOD activity in all the stress treatments but inhibited the POD activity. Both catalase (CAT) and glutathione peroxidase (GPX) activity were increased by saline and low P stress while the activities inhibited in combined stress. Similar results were found for ascorbate peroxidase (APX), glutathione peroxidase (GR), and dehydroascorbate reductase (DHAR) activities in both genotypes. However, monodehydroascorbate reductase (MDHAR) activity was inhibited in all the stresses. Interestingly, Tre enhanced CAT, APX, GPX, GR, MDHAR, and DHAR activities suggesting the amelioration of ROS scavenging in maize under all the stresses. Conversely, increased glyoxalase activities in saline and low P stress in BHM-9 suggested better MG detoxification system because of the down-regulation of glyoxalase-I (Gly-I) activity in BHM-7 in those stresses. Tre also increased the glyoxalase activities in both genotypes under all the stresses. Tre improved the growth in maize seedlings by decreasing Na+/K+, ROS, MDA, and MG through regulating antioxidant and glyoxalase systems.


2014 ◽  
Vol 60 (5) ◽  
pp. 679-694 ◽  
Author(s):  
Keitaro Tawaraya ◽  
Ryota Horie ◽  
Takuro Shinano ◽  
Tadao Wagatsuma ◽  
Kazuki Saito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document