Optimization of adsorption parameters of activated carbon modified with the oxidizing agent on adsorptive removal of toluene using response surface methodology (RSM)

Author(s):  
Amir Hossein Khoshakhlagh ◽  
Mojtaba Beygzadeh ◽  
Farideh Golbabaei ◽  
Francisco Carrasco-Marín ◽  
Seyed Jamaleddin Shahtaheri
2016 ◽  
Vol 14 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
Areeb Shehzad ◽  
Mohammed J.K. Bashir ◽  
Sumathi Sethupathi ◽  
Jun-Wei Lim

Abstract The present work reveals the preparation and optimization of sea mango based activated carbon (SMAC) by microwave induced KOH activation for the adsorptive removal of organic and inorganic contaminants from the mature anaerobic landfill leachate using response surface methodology (RSM) technique. Chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) are the main indicators for organic and inorganic compounds often found in aged landfill leachate. Hence, the treatment of this stabilized landfill leachate is considered to be an essential step prior to its discharge. The leachate sample was collected from Sahom Landfill site in Perak, Malaysia and the initial concentrations of COD and NH3-N were measured as 550 mg/L and 3,330 mg/L, respectively. The feasibility of converting Sea mango to activated carbon process to remove the COD and NH3-N pollutants from landfill leachate was investigated. The preparation conditions such as microwave heating at power range (350–600 W), impregnation of AC with KOH (0.5–3.0) and retention time (6–10 min) were evaluated, analyzed and optimized using response surface methodology (RSM). From the analysis of variance (ANOVA), the optimum conditions for preparation of SMAC was at 560 W of activation power, 8.4 min of activation time and 2.10 of impregnation ratios with higher adsorptive removal of COD (72.50 %), and NH3-N (79.77 %), respectively. The physical and chemical properties of SMAC were evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and surface area. The findings exemplified the applicability of SMAC as an effective precursor for the simultaneous removal of organic and inorganic pollutants from mature landfill leachate.


2018 ◽  
Vol 54 (4B) ◽  
pp. 123 ◽  
Author(s):  
Long Giang Bach

In this study, we have used the potassium hydroxide (KOH) as an eco–friendly and favorable activating agent to develop the porous and defect structure of activated carbon. Otherwise, the response surface methodology (RSM) has been applied to investigate the effects of the adsorption parameters including initial concentration, adsorbent dosage, and pH of solution on the percentage of Cu2+ removal. The RSM–based two order regression polynomial models were found to be statistically significant by values of the coefficients of determination (R2) closer than 1.0 and the P–values < 0.0001 from analysis of variance (ANOVA). Under the predicted optimum conditions, actual experiments were confirmed to optimize the percentage of Cu2+ removal efficiency (97.5 %) and maximum adsorption capacity (24.45 mg.g–1) from Langmuir equation. Based on experimental results, a treatment process can be easily designed using rice husk for the fabrication of activated carbon to remove toxic metal ions from the polluted water. 


Author(s):  
Abrar Muslim ◽  
Marwan Marwan ◽  
Ramli Saifullah ◽  
Muhammad Yahya Azwar ◽  
Darmadi Darmadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document