Simultaneous Removal of Organic and Inorganic Pollutants From Landfill Leachate Using Sea Mango Derived Activated Carbon via Microwave Induced Activation

2016 ◽  
Vol 14 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
Areeb Shehzad ◽  
Mohammed J.K. Bashir ◽  
Sumathi Sethupathi ◽  
Jun-Wei Lim

Abstract The present work reveals the preparation and optimization of sea mango based activated carbon (SMAC) by microwave induced KOH activation for the adsorptive removal of organic and inorganic contaminants from the mature anaerobic landfill leachate using response surface methodology (RSM) technique. Chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) are the main indicators for organic and inorganic compounds often found in aged landfill leachate. Hence, the treatment of this stabilized landfill leachate is considered to be an essential step prior to its discharge. The leachate sample was collected from Sahom Landfill site in Perak, Malaysia and the initial concentrations of COD and NH3-N were measured as 550 mg/L and 3,330 mg/L, respectively. The feasibility of converting Sea mango to activated carbon process to remove the COD and NH3-N pollutants from landfill leachate was investigated. The preparation conditions such as microwave heating at power range (350–600 W), impregnation of AC with KOH (0.5–3.0) and retention time (6–10 min) were evaluated, analyzed and optimized using response surface methodology (RSM). From the analysis of variance (ANOVA), the optimum conditions for preparation of SMAC was at 560 W of activation power, 8.4 min of activation time and 2.10 of impregnation ratios with higher adsorptive removal of COD (72.50 %), and NH3-N (79.77 %), respectively. The physical and chemical properties of SMAC were evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and surface area. The findings exemplified the applicability of SMAC as an effective precursor for the simultaneous removal of organic and inorganic pollutants from mature landfill leachate.

2019 ◽  
Vol 6 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Abdul Aziz Hamidi ◽  
Syed Zainal Sharifah Farah Fariza ◽  
Alazaiza Motasem Y.D

Landfill leachate is highly polluted and generated as a result of water infiltration through solid waste produced domestically and industrially. This study investigated the applicability of the response surface methodology (RSM) to optimize the removal performances of chemical oxygen demand (COD), color, and suspended solids (SS) from landfill leachate by coagulation process using Tin tetrachloride pentahydrate. The leachate samples were collected from Alor Pongsu Landfill (APLS) in Perak, Malaysia. Before starting the experiments, general characterization was carried out for raw leachate samples to investigate their physical and chemical properties. The effects of the dosage and pH of SnCl4 on the removal performances were evaluated as well. An ideal experimental design was performed based on the central composite design (CCD) by RSM. In addition, this RSM was used to evaluate the effects of process variables and their interaction toward the attainment of their optimum conditions. The statistical design of the experiments and data analysis was resolved using the Design-Expert software. Further, the range of coagulant dosage and pH was selected based on a batch study which was conducted at 13000 mg/L to 17000 mg/L of SnCl4 and pH ranged from 6 to 10. The results showed that the optimum pH and dosage of SnCl4 were 7.17 and 15 g/L, respectively, where the maximum removal efficiency was 67.7% for COD and 100% for color and SS. The results were in agreement with the experimental data with a maximum removal efficiency of 67.84 %, 98.6 %, and 99.3%, for COD, color, and SS, respectively. Overall, this study verified that the RSM method was viable for optimizing the operational condition of the coagulation-flocculation process.


RSC Advances ◽  
2016 ◽  
Vol 6 (24) ◽  
pp. 19768-19779 ◽  
Author(s):  
Farshid Nasiri Azad ◽  
Mehrorang Ghaedi ◽  
Arash Asfaram ◽  
Arsalan Jamshidi ◽  
Ghasem Hassani ◽  
...  

The present study deals with the simultaneous removal of chrysoidine G (CG), rhodamine B (RB) and disulfine blue (DB) by Ni doped ferric oxyhydroxide FeO(OH) nanowires on activated carbon (Ni doped FeO(OH)-NWs–AC).


RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 83427-83435 ◽  
Author(s):  
H. Mazaheri ◽  
M. Ghaedi ◽  
S. Hajati ◽  
K. Dashtian ◽  
M. K. Purkait

Ruthenium nanoparticles were synthesized in a green approach with high yield in the presence of ultrasound and then the product was loaded on activated carbon.


2017 ◽  
Vol 62 ◽  
pp. 177-187 ◽  
Author(s):  
Zaidi Ab Ghani ◽  
Mohd Suffian Yusoff ◽  
Nastaein Qamaruz Zaman ◽  
Mohd Faiz Muaz Ahmad Zamri ◽  
Jeyashelly Andas

Sign in / Sign up

Export Citation Format

Share Document