Risks and uncertainties in reservoir yield in highly variable intermittent rivers: case of the Castanhão Reservoir in semi-arid Brazil

2014 ◽  
Vol 59 (6) ◽  
pp. 1184-1195 ◽  
Author(s):  
J.N.B. Campos ◽  
F.A. Souza Filho ◽  
H.V.C. Lima
2016 ◽  
Vol 88 (2) ◽  
pp. 1113-1125 ◽  
Author(s):  
José N.B. Campos ◽  
Iran E. Lima Neto ◽  
Ticiana M.C. Studart ◽  
Luiz S.V. Nascimento

This study investigates the relationships between yield and evaporation as a function of lake morphology in semi-arid Brazil. First, a new methodology was proposed to classify the morphology of 40 reservoirs in the Ceará State, with storage capacities ranging from approximately 5 to 4500 hm3. Then, Monte Carlo simulations were conducted to study the effect of reservoir morphology (including real and simplified conical forms) on the water storage process at different reliability levels. The reservoirs were categorized as convex (60.0%), slightly convex (27.5%) or linear (12.5%). When the conical approximation was used instead of the real lake form, a trade-off occurred between reservoir yield and evaporation losses, with different trends for the convex, slightly convex and linear reservoirs. Using the conical approximation, the water yield prediction errors reached approximately 5% of the mean annual inflow, which is negligible for large reservoirs. However, for smaller reservoirs, this error became important. Therefore, this paper presents a new procedure for correcting the yield-evaporation relationships that were obtained by assuming a conical approximation rather than the real reservoir morphology. The combination of this correction with the Regulation Triangle Diagram is useful for rapidly and objectively predicting reservoir yield and evaporation losses in semi-arid environments.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Kasahun Eba ◽  
Tibebu Habtewold ◽  
Delenasaw Yewhalaw ◽  
George K. Christophides ◽  
Luc Duchateau

Abstract Background Understanding malaria vector’s population dynamics and their spatial distribution is important to define when and where the largest infection risks occur and implement appropriate control strategies. In this study, the seasonal spatio-temporal dynamics of the malaria vector population and transmission intensity along intermittent rivers in a semi-arid area of central Ethiopia were investigated. Methods Mosquitoes were collected monthly from five clusters, 2 close to a river and 3 away from a river, using pyrethrum spray catches from November 2014 to July 2016. Mosquito abundance was analysed by the mixed Poisson regression model. The human blood index and sporozoite rate was compared between seasons by a logistic regression model. Results A total of 2784 adult female Anopheles gambiae sensu lato (s.l.) were collected during the data collection period. All tested mosquitoes (n = 696) were identified as Anopheles arabiensis by polymerase chain reaction. The average daily household count was significantly higher (P = 0.037) in the clusters close to the river at 5.35 (95% CI 2.41–11.85) compared to the clusters away from the river at 0.033 (95% CI 0.02–0.05). Comparing the effect of vicinity of the river by season, a significant effect of closeness to the river was found during the dry season (P = 0.027) and transition from dry to wet season (P = 0.032). Overall, An. arabiensis had higher bovine blood index (62.8%) as compared to human blood index (23.8%), ovine blood index (9.2%) and canine blood index (0.1%). The overall sporozoite rate was 3.9% and 0% for clusters close to and away from the river, respectively. The overall Plasmodium falciparum and Plasmodium vivax entomologic inoculation rates for An. arabiensis in clusters close to the river were 0.8 and 2.2 infective bites per person/year, respectively. Conclusion Mosquito abundance and malaria transmission intensity in clusters close to the river were higher which could be attributed to the riverine breeding sites. Thus, vector control interventions including targeted larval source management should be implemented to reduce the risk of malaria infection in the area.


2006 ◽  
Vol 66 (2b) ◽  
pp. 575-585 ◽  
Author(s):  
F. Pedro ◽  
L. Maltchik ◽  
I. Bianchini Jr.

The dynamics of aquatic macrophytes in intermittent rivers is generally related to the characteristics of the resistance and resilience of plants to hydrologic disturbances of flood and drought. In the semi-arid region of Brazil, intermittent rivers and streams are affected by disturbances with variable intensity, frequency, and duration throughout their hydrologic cycles. The aim of the present study is to determine the occurrence and variation of biomass of aquatic macrophyte species in two intermittent rivers of distinct hydrologic regimes. Their dynamics were determined with respect to resistance and resilience responses of macrophytes to flood and drought events by estimating the variation of biomass and productivity throughout two hydrologic cycles. Twenty-one visits were undertaken in the rewetting, drying, and drought phases in a permanent puddle in the Avelós stream and two temporary puddles in the Taperoá river, state of Paraíba, Northeast Brazil. The sampling was carried out by using the square method. Floods of different magnitudes occurred during the present study in the river and in the stream. The results showed that floods and droughts are determining factors in the occurrence of macrophytes and in the structure of their aquatic communities. The species richness of the aquatic macrophyte communities was lower in the puddles of the river and stream subject to flood events, when compared to areas where the run-off water is retained. At the beginning of the recolonization process, the intensity of the floods was decisive in the productivity and biomass of the aquatic macrophytes in the Taperoá river and the Avelós stream. In intermediate levels of disturbance, the largest values of productivity and biomass and the shortest time for starting the recolonization process occurred.


2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


2007 ◽  
Vol 23 (5) ◽  
pp. 546-555 ◽  
Author(s):  
R. Burgos ◽  
L.J. Odens ◽  
R.J. Collier ◽  
L.H. Baumgard ◽  
M.J. VanBaale

Sign in / Sign up

Export Citation Format

Share Document