Satellite remote sensing requirements for hydrology and water management from the mid-1990s, in relation to the Columbus Programme of the European Space Agency

1988 ◽  
Vol 33 (1) ◽  
pp. 1-17 ◽  
Author(s):  
ERIC C. BARRETT ◽  
REGINALD W. HERSCHY ◽  
JOHN B. STEWART
2021 ◽  
Author(s):  
Guadalupe Bru ◽  
Pablo Ezquerro ◽  
Carolina Guardiola-Albert ◽  
Marta Béjar-Pizarro ◽  
Gerardo Herrera ◽  
...  

Groundwater is a vitally important resource for humans. One of the main problems derived from the overexploitation ofaquifers is land subsidence, which in turn carries other associated natural risks. Advanced Differential satellite radarinterferometry (A-DInSAR) techniques provide valuable information on the surface displacements of the ground, whichserve to characterize both the deformational behaviour of the aquifer and its properties. RESERVOIR is a research projectbelonging to the European PRIMA programme, whose main objective is to design sustainable groundwater managementmodels through the study of four areas of the Mediterranean subjected to water stress. One of the main tasks of the projectis the integration of the terrain deformation data obtained with satellite remote sensing techniques in the hydrogeologicaland geomechanical models of the aquifers. In the present work, a first evaluation of the deformation of the ground in eachstudy area is carried out using the tools contained in the Geohazards Exploitation Platform (GEP). This is a service financedby the European Space Agency (ESA) that allows processing directly on its server, without need to store data orapplications locally.


2021 ◽  
Vol 13 (20) ◽  
pp. 4087
Author(s):  
Maria Teresa Melis ◽  
Luca Pisani ◽  
Jo De Waele

Hundreds of large and deep collapse dolines dot the surface of the Quaternary basaltic plateau of Azrou, in the Middle Atlas of Morocco. In the absence of detailed topographic maps, the morphometric study of such a large number of features requires the use of remote sensing techniques. We present the processing, extraction, and validation of depth measurements of 89 dolines using tri-stereo Pleiades images acquired in 2018–2019 (the European Space Agency (ESA) © CNES 2018, distributed by Airbus DS). Satellite image-derived DEMs were field-verified using traditional mapping techniques, which showed a very good agreement between field and remote sensing measures. The high resolution of these tri-stereo images allowed to automatically generate accurate morphometric datasets not only regarding the planimetric parameters of the dolines (diameters, contours, orientation of long axes), but also for what concerns their depth and altimetric profiles. Our study demonstrates the potential of using these types of images on rugged morphologies and for the measurement of steep depressions, where traditional remote sensing techniques may be hindered by shadow zones and blind portions. Tri-stereo images might also be suitable for the measurement of deep and steep depressions (skylights and collapses) on Martian and Lunar lava flows, suitable targets for future planetary cave exploration.


2020 ◽  
Author(s):  
Ilham Ali ◽  
Jay Famiglietti ◽  
Jonathan McLelland

Water stress in both surface and groundwater supplies is an increasing environmental and sustainable management issue. According to the UN Environment Program, at current depletion rates almost half of the world's population will suffer severe water stress by 2030. This is further exacerbated by climate change effects which are altering the hydrologic cycle. Understanding climate change implications is critical to planning for water management scenarios as situations such as rising sea levels, increasing severity of storms, prolonged drought in many regions, ocean acidification, and flooding due to snowmelt and heavy precipitation continue. Today, major efforts towards equitable water management and governance are needed. This study adopts the broad, holistic lenses of sustainable development and water diplomacy, acknowledging both the complex and transboundary nature of water issues, to assess the benefits of a “science to policy” approach in water governance. Such negotiations and frameworks are predicated on the availability of timely and uniform data to bolster water management plans, which can be provided by earth-observing satellite missions. In recent decades, significant advances in satellite remote sensing technology have provided unprecedented data of the Earth’s water systems, including information on changes in groundwater storage, mass loss of snow caps, evaporation of surface water reservoirs, and variations in precipitation patterns. In this study, specific remote sensing missions are surveyed (i.e. NASA LANDSAT, GRACE, SMAP, CYGNSS, and SWOT) to understand the breadth of data available for water uses and the implications of these advances for water management. Results indicate historical precedent where remote sensing data and technologies have been successfully integrated to achieve more sustainable water management policy and law, such as in the passage of the California Sustainable Groundwater Management Act of 2014. In addition, many opportunities exist in current transboundary and interstate water conflicts (for example, the Nile Basin and the Tri-State Water Wars between Alabama, Georgia, and Florida) to integrate satellite-remote-sensed water data as a means of “joint-fact finding” and basis for further negotiations. The authors argue that expansion of access to satellite remote sensing data of water for the general public, stakeholders, and policy makers would have a significant impact on the development of science-oriented water governance measures and increase awareness of water issues by significant amounts. Barriers to entry exist in accessing many satellite datasets because of prerequisite knowledge and expertise in the domain. More user-friendly platforms need to be developed in order to maximize the utility of present satellite data. Furthermore, sustainable co-operations should be formed to employ satellite remote sensing data on a regional scale to preempt problems in water supply, quantity, and quality.


1994 ◽  
Vol 160 ◽  
pp. 381-394
Author(s):  
Yves Langevin

The European Space Agency (ESA) has selected Rosetta as the next cornerstone mission, to be launched in 2003. The goal is to perfom one or more fly-bys to main belt asteroids, followed by a rendez-vous with an active comet. Advanced in situ analysis, both in the coma and on the surfaces of the nucleus, will be possible, as well as monitoring by remote sensing instruments of the nucleus and of the inner coma for a time span of more than one year, until perihelion. This paper outlines the scientific and technological choices done in the definition of the mission.


2020 ◽  
Author(s):  
Alexander Kokhanovsky ◽  
Jason Box ◽  
Baptiste Vandecrux ◽  
Michael Kern

<p><span>In this work we propose a simple technique to derive snow and atmosphere properties from satellite top-of-atmosphere spectral reflectance observations using asymptotic radiative transfer theory valid for the case of weakly absorbing and optically thick media. The following snow properties are derived and analyzed: ice grain size, snow specific surface area, snow pollution load, snow spectral and broadband albedo. The developed retrieval technique includes both atmospheric correction and cloud screening routines and is based on Ocean and Land Colour Instrument (OLCI) measurements on board Sentinel-3A, B. The spectral aerosol optical thickness, total ozone and water vapour column are derived fitting the measured and simulated OLCI-registered spectral reflectances at 21 OLCI channels.</span></p><p><span>The derived results are validated using ground - based observations. It follows that satellite observations can be used to study time series of spectral and broadband albedo over Greenland. The deviations of satellite and ground observations are due to problems with cloud screening over snow and also due to different spatial scale of satellite and ground observations (Kokhanovsky et al., 2020).</span></p><p>Acknowledgements</p><p>The work has been supported by the European Space Agency in the framework of ESRIN contract No. 4000118926/16/I-NB ‘Scientific Exploitation of Operational Missions (SEOM) Sentinel-3 Snow (Sentinel-3 for Science, Land Study 1: Snow’) and ESRIN contract 4000125043 – ESA/AO/1-9101/17/I-NB EO science for society ‘Pre-operational Sentinel-3 snow and ice products’.</p><p><span>References</span></p><p>Kokhanovsky, A.A., et al. (2020), The determination of snow albedo from satellite observations using fast atmospheric correction technique, Remote Sensing, 12 (2), 234,  https://doi.org/10.3390/rs12020234.</p>


European Remote Sensing Satellite Number 1 (ERS-1) is a truly international project promoted by the European Space Agency (E.S.A.) and involving 10 countries. The decisions about what should be the aims of the satellite have been reached as the result of lengthy discussions between E.S.A. and potential customers, and of course have also had to take into account the budgetary limitations imposed by the participating countries. The major objectives of ERS-1 are set out in the paper together with a very brief outline of the capabilities of the instruments required to meet these objectives. The paper concludes by suggesting areas in which there is a need for technological advance, which combined with concentrated marketing activity will ensure a commercial future for the remote sensing capability that will be demonstrated by ERS-1.


2020 ◽  
Vol 642 ◽  
pp. A6 ◽  
Author(s):  
F. Auchère ◽  
V. Andretta ◽  
E. Antonucci ◽  
N. Bach ◽  
M. Battaglia ◽  
...  

Context. To meet the scientific objectives of the mission, the Solar Orbiter spacecraft carries a suite of in-situ (IS) and remote sensing (RS) instruments designed for joint operations with inter-instrument communication capabilities. Indeed, previous missions have shown that the Sun (imaged by the RS instruments) and the heliosphere (mainly sampled by the IS instruments) should be considered as an integrated system rather than separate entities. Many of the advances expected from Solar Orbiter rely on this synergistic approach between IS and RS measurements. Aims. Many aspects of hardware development, integration, testing, and operations are common to two or more RS instruments. In this paper, we describe the coordination effort initiated from the early mission phases by the Remote Sensing Working Group. We review the scientific goals and challenges, and give an overview of the technical solutions devised to successfully operate these instruments together. Methods. A major constraint for the RS instruments is the limited telemetry (TM) bandwidth of the Solar Orbiter deep-space mission compared to missions in Earth orbit. Hence, many of the strategies developed to maximise the scientific return from these instruments revolve around the optimisation of TM usage, relying for example on onboard autonomy for data processing, compression, and selection for downlink. The planning process itself has been optimised to alleviate the dynamic nature of the targets, and an inter-instrument communication scheme has been implemented which can be used to autonomously alter the observing modes. We also outline the plans for in-flight cross-calibration, which will be essential to the joint data reduction and analysis. Results. The RS instrument package on Solar Orbiter will carry out comprehensive measurements from the solar interior to the inner heliosphere. Thanks to the close coordination between the instrument teams and the European Space Agency, several challenges specific to the RS suite were identified and addressed in a timely manner.


Author(s):  
Domenico Antonio Giuseppe Dell'Aglio ◽  
Carmine Gambardella ◽  
Massimiliano Gargiulo ◽  
Antonio Iodice ◽  
Rosaria Parente ◽  
...  

Forest fires are part of a set of natural disasters that have always affected regions of the world typically characterized by a tropical climate with long periods of drought. However, due to climate change in recent years, other regions of our planet have also been affected by this phenomenon, never seen before. One of them is certainly the Italian peninsula, and especially the regions of southern Italy. For this reason, the scientific community, as well as remote sensing one, is highly concerned in developing reliable techniques to provide useful support to the competent authorities. In particular, three specific tasks have been carried out in this work: (i) fire risk prevention, (ii) active fire detection, and (iii) post-fire area assessment. To accomplish these analyses, the capability of a set of spectral indices, derived from spaceborne remote sensing (RS) data, is assessed to monitor the forest fires. The spectral indices are obtained from Sentinel-2 multispectral images of the European Space Agency (ESA), which are free of charge and openly accessible. Moreover, the twin Sentinel-2 sensors allow to overcome some restrictions on time delivery and observation repeat time. The performance of the proposed analyses were assessed experimentally to monitor the forest fires occurred in two specific study areas during the summer of 2017: the volcano Vesuvius, near Naples, and the Lattari mountains, near Sorrento (both in Campania, Italy).


2018 ◽  
Vol 10 (11) ◽  
pp. 1839 ◽  
Author(s):  
A. Al-Yaari ◽  
S. Dayau ◽  
C. Chipeaux ◽  
C. Aluome ◽  
A. Kruszewski ◽  
...  

Global soil moisture (SM) products are currently available thanks to microwave remote sensing techniques. Validation of these satellite-based SM products over different vegetation and climate conditions is a crucial step. INRA (National Institute of Agricultural Research) has set up the AQUI SM and soil temperature in situ network (composed of three main sites Bouron, Bilos, and Hermitage), over a flat area of dense pine forests, in South-Western France (the Bordeaux–Aquitaine region) to validate the Soil Moisture and Ocean salinity (SMOS) satellite SM products. SMOS was launched in 2009 by the European Space Agency (ESA). The aims of this study are to present the AQUI network and to evaluate the SMOS SM product (in the new SMOS-IC version) along with other microwave SM products such as the active ASCAT (Advanced Scatterometer) and the ESA combined (passive and active) CCI (Climate Change Initiative) SM retrievals. A first comparison, using Pearson correlation, Bias, RMSE (Root Mean Square Error), and Un biased RMSE (ubRMSE) scores, between the 0–5 cm AQUI network and ASCAT, CCI, and SMOS SM products was conducted. In general all the three products were able to reproduce the annual cycle of the AQUI in situ observations. CCI and ASCAT had best and similar correlations (R~0.72) over the Bouron and Bilos sites. All had comparable correlations over the Hermitage sites with overall average values of 0.74, 0.68, and 0.69 for CCI, SMOS-IC, and ASCAT, respectively. Considering anomalies, correlation values decreased for all products with best ability to capture day to day variations obtained by ASCAT. CCI (followed by SMOS-IC) had the best ubRMSE values (mostly < 0.04 m3/m3) over most of the stations. Although the region is highly impacted by radio frequency interferences, SMOS-IC followed correctly the in situ SM dynamics. All the three remotely-sensed SM products (except SMOS-IC over some stations) overestimated the AQUI in situ SM observations. These results demonstrate that the AQUI network is likely to be well-suited for satellite microwave remote sensing evaluations/validations.


Sign in / Sign up

Export Citation Format

Share Document