scholarly journals Resection of the piriform cortex for temporal lobe epilepsy: a Novel approach on imaging segmentation and surgical application

Author(s):  
Jose E. Leon-Rojas ◽  
Sabahat Iqbal ◽  
Sjoerd B. Vos ◽  
Roman Rodionov ◽  
Anna Miserocchi ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 4667
Author(s):  
Michaela Shishmanova-Doseva ◽  
Dimitrinka Atanasova ◽  
Yordanka Uzunova ◽  
Lyubka Yoanidu ◽  
Lyudmil Peychev ◽  
...  

Clinically, temporal lobe epilepsy (TLE) is the most prevalent type of partial epilepsy and often accompanied by various comorbidities. The present study aimed to evaluate the effects of chronic treatment with the antiepileptic drug (AED) lacosamide (LCM) on spontaneous motor seizures (SMS), behavioral comorbidities, oxidative stress, neuroinflammation, and neuronal damage in a model of TLE. Vehicle/LCM treatment (30 mg/kg, p.o.) was administered 3 h after the pilocarpine-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. Our study showed that LCM attenuated the number of SMS and corrected comorbid to epilepsy impaired motor activity, anxiety, memory, and alleviated depressive-like responses measured in the elevated plus maze, object recognition test, radial arm maze test, and sucrose preference test, respectively. This AED suppressed oxidative stress through increased superoxide dismutase activity and glutathione levels, and alleviated catalase activity and lipid peroxidation in the hippocampus. Lacosamide treatment after SE mitigated the increased levels of IL-1β and TNF-α in the hippocampus and exerted strong neuroprotection both in the dorsal and ventral hippocampus, basolateral amygdala, and partially in the piriform cortex. Our results suggest that the antioxidant, anti-inflammatory, and neuroprotective activity of LCM is an important prerequisite for its anticonvulsant and beneficial effects on SE-induced behavioral comorbidities.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013033
Author(s):  
Ezequiel Gleichgerrcht ◽  
Daniel L. Drane ◽  
Simon Sean Keller ◽  
Kathryn A. Davis ◽  
Robert Gross ◽  
...  

Objective:To determine the association between surgical lesions of distinct grey and white structures and connections with favorable post-operative seizure outcomes.Methods:Patients with drug-resistant temporal lobe epilepsy (TLE) from three epilepsy centers were included. We employed a voxel-based and connectome-based mapping approach to determine the association between favorable outcomes and surgery-induced temporal lesions. Analyses were conducted controlling for multiple confounders, including total surgical resection/ablation volume, hippocampal volumes, side of surgery, and site where the patient was treated.Results:The cohort included 113 patients with TLE [54 women; 86 right-handed; 16.5 (SD = 11.9) age at seizure onset, 54.9% left] who were 61.1% free of disabling seizures (Engel class 1) at follow-up. Postoperative seizure freedom in TLE was associated with 1) surgical lesions that targeted the hippocampus as well as the amygdala-piriform cortex complex and entorhinal cortices; 2) disconnection of temporal, frontal, and limbic regions through loss of white matter tracts within the uncinate fasciculus, anterior commissure, and fornix; and 3) functional disconnection of the frontal (superior and middle frontal gyri, orbitofrontal region) and temporal (superior and middle pole) lobes.Conclusions:Better postoperative seizure freedom are associated with surgical lesions of specific structures and connections throughout the temporal lobes. These findings shed light on the key components of epileptogenic networks in TLE and constitute a promising source of new evidence for future improvements in surgical interventions.Classification of Evidence:This study provides Class II evidence that for patients with temporal lobe epilepsy, postoperative seizure freedom is associated with surgical lesions of specific temporal lobe structures and connections.


Author(s):  
Valeri Borger ◽  
Matthias Schneider ◽  
Julia Taube ◽  
Anna‐Laura Potthoff ◽  
Vera C. Keil ◽  
...  

2005 ◽  
Vol 5 (5) ◽  
pp. 187-189 ◽  
Author(s):  
Gregory D. Cascino

Voxel-based Morphometry of the Thalamus in Patients with Refractory Medial Temporal Lobe Epilepsy Bonilha L, Rorden C, Castellano G, Cendes F, Li LM Neuroimage 2005;25:1016–1021 Previous research has suggested that patients with refractory medial temporal lobe epilepsy (MTLE) show gray matter atrophy both within the temporal lobes and in the thalamus. However, these studies have not distinguished between different nuclei within the thalamus. We examined whether thalamic atrophy correlates with the nuclei's connections to other regions in the limbic system. T1-weighted MRI scans were obtained from 49 neurologically healthy control subjects and 43 patients diagnosed with chronic refractory MTLE that was unilateral in origin (as measured by ictal EEG and hippocampal atrophy observed on MRI). Measurements of gray matter concentration (GMC) were made by using automated segmentation algorithms. GMC was analyzed both voxel by voxel (preserving spatial precision) as well as using predefined regions of interest. Voxel-based morphometry revealed intense GMC reduction in the anterior portion relative to posterior thalami. Furthermore, thalamic atrophy was greater ipsilateral to the MTLE origin than on the contralateral side. Here we demonstrate that the thalamic atrophy is most intense in the thalamic nuclei that have strong connections with the limbic hippocampus. This finding suggests that thalamic atrophy reflects this region's anatomic and functional association with the limbic system rather than a general vulnerability to damage. Ipsilateral and Contralateral MRI Volumetric Abnormalities in Chronic Unilateral Temporal Lobe Epilepsy and Their Clinical Correlates Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, Hermann B Epilepsia 2005;46:420–430 Purpose To assess the presence, extent, and clinical correlates of quantitative MR volumetric abnormalities in ipsilateral and contralateral hippocampus, and temporal and extratemporal lobe regions in unilateral temporal lobe epilepsy (TLE). Methods In total, 34 subjects with unilateral left ( n = 15) or right ( n = 19) TLE were compared with 65 healthy controls. Regions of interest included the ipsilateral and contralateral hippocampus as well as temporal, frontal, parietal, and occipital lobe gray and white matter. Clinical markers of neurodevelopmental insult (initial precipitating insult, early age of recurrent seizures) and chronicity of epilepsy (epilepsy duration, estimated number of lifetime generalized seizures) were related to MR volume abnormalities. Results Quantitative MR abnormalities extend beyond the ipsilateral hippocampus and temporal lobe with extratemporal (frontal and parietal lobe) reductions in cerebral white matter, especially ipsilateral but also contralateral to the side of seizure onset. Volumetric abnormalities in ipsilateral hippocampus and bilateral cerebral white matter are associated with factors related to both the onset and the chronicity of the patients’ epilepsy. Conclusions These cross-sectional findings support the view that volumetric abnormalities in chronic TLE are associated with a combination of neurodevelopmental and progressive effects, characterized by a prominent disruption in ipsilateral hippocampus and neural connectivity (i.e., white matter volume loss) that extends beyond the temporal lobe, affecting both ipsilateral and contralateral hemispheres. MR Volumetric Analysis of the Piriform Cortex and Cortical Amygdala in Drug-refractory Temporal Lobe Epilepsy Gonçalves Pereira PM, Insaustid R, Artacho-Pérulad E, Salmenperäe T, Kälviäinene R, Pitkänen A AJNR Am J Neuroradiol 2005;26:319–332 Purpose The assessment of patients with temporal lobe epilepsy (TLE) traditionally focuses on the hippocampal formation. These patients, however, may have structural abnormalities in other brain areas. Our purpose was to develop a method to measure the combined volume of the human piriform cortex and cortical amygdala (PCA) by using MRI and to investigate PCA atrophy. Methods The definition of anatomic landmarks on MRIs was based on histologic analysis of 23 autopsy control subjects. Thirty-nine adults with chronic TLE and 23 age-matched control subjects were studied. All underwent high-spatial-resolution MRI at 1.5 T, including a tilted T1-weighted 3D dataset. The PCA volumes were compared with the control values and further correlated with hippocampal, amygdale, and entorhinal cortex volumes. Results The normal volume was 530 ± 59 mm3 (422-644) (mean ± 1 SD [range]) on the right and 512 ± 60 mm3 (406-610) on the left PCA (no asymmetry, and no age or sex effect). The intraobserver and interobserver variability were 6% and 8%, respectively. In right TLE patients, the mean right PCA volume was 18% smaller than that in control subjects ( p < 0.001) and 15% smaller than in left TLE ( p < 0.001). In left TLE, the mean left PCA volume was 16% smaller than in control subjects ( p < 0.001) and 19% smaller than in right TLE ( p < 0.001). Overall, 18 (46%) of the 39 patients had a greater than 20% volume reduction in the ipsilateral PCA. Bilateral atrophy was found in 7 (18%) of 39. Patients with hippocampal volumes of at least 2 SDs below the control mean had an 18% reduction in the mean PCA volume compared with patients without hippocampal atrophy ( p < 0.001). Ipsilaterally, hippocampal ( r = 0.756, p < 0.01), amygdaloid ( r = 0.548, p < 0.01), and entorhinal ( r = 0.500, p < 0.01) volumes correlated with the PCA volumes. Conclusions The quantification of PCA volume with MRI showed that the PCA is extensively damaged in chronic TLE patients, particularly in those with hippocampal atrophy.


2011 ◽  
Vol 31 (8) ◽  
pp. 1675-1686 ◽  
Author(s):  
Silje Alvestad ◽  
Janniche Hammer ◽  
Hong Qu ◽  
Asta Håberg ◽  
Ole Petter Ottersen ◽  
...  

The occurrence of spontaneous seizures in mesial temporal lobe epilepsy (MTLE) is preceded by a latent phase that provides a time window for identifying and treating patients at risk. However, a reliable biomarker of epileptogenesis has not been established and the underlying processes remain unclear. Growing evidence suggests that astrocytes contribute to an imbalance between excitation and inhibition in epilepsy. Here, astrocytic and neuronal neurotransmitter metabolism was analyzed in the latent phase of the kainate model of MTLE in an attempt to identify epileptogenic processes and potential biomarkers. Fourteen days after status epilepticus, [1-13C]glucose and [1,2-13C]acetate were injected and the hippocampal formation, entorhinal/piriform cortex, and neocortex were analyzed by 1H and 13C magnetic resonance spectroscopy. The 13C enrichment in glutamate, glutamine, and γ-aminobutyric acid (GABA) from [1-13C]glucose was decreased in all areas. Decreased GABA content was specific for the hippocampal formation, together with a pronounced decrease in astrocyte-derived [1,2-13C]GABA and a decreased transfer of glutamine for the synthesis of GABA. Accumulation of branched-chain amino acids combined with decreased [4,5-13C]glutamate in hippocampal formation could signify decreased transamination via branched-chain aminotransferase in astrocytes. The results point to astrocytes as major players in the epileptogenic process, and 13C enrichment of glutamate and GABA as potential biomarkers.


2019 ◽  
Vol 76 (6) ◽  
pp. 690 ◽  
Author(s):  
Marian Galovic ◽  
Irene Baudracco ◽  
Evan Wright-Goff ◽  
Galo Pillajo ◽  
Parashkev Nachev ◽  
...  

2019 ◽  
Vol 33 (7) ◽  
pp. 986-995 ◽  
Author(s):  
Elizabeth Stewart ◽  
Cathy Catroppa ◽  
Linda Gonzalez ◽  
Deepak Gill ◽  
Richard Webster ◽  
...  

2012 ◽  
Vol 43 (01) ◽  
Author(s):  
VE Bernedo Paredes ◽  
H Schwartz ◽  
M Gartenschläger ◽  
M Gartenschläger ◽  
HG Buchholz ◽  
...  

2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
C Waisburg ◽  
E Sherman ◽  
L Byron ◽  
A Chapman ◽  
G Ainsworth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document