Mental Rotation of Tactical Instruction Displays Affects Information Processing Demand and Execution Accuracy in Basketball

2017 ◽  
Vol 88 (3) ◽  
pp. 365-370 ◽  
Author(s):  
Till Koopmann ◽  
Yvonne Steggemann-Weinrich ◽  
Jochen Baumeister ◽  
Daniel Krause
2016 ◽  
Vol 28 (8) ◽  
pp. 1139-1151
Author(s):  
Alexander Schlegel ◽  
Dedeepya Konuthula ◽  
Prescott Alexander ◽  
Ethan Blackwood ◽  
Peter U. Tse

The manipulation of mental representations in the human brain appears to share similarities with the physical manipulation of real-world objects. In particular, some neuroimaging studies have found increased activity in motor regions during mental rotation, suggesting that mental and physical operations may involve overlapping neural populations. Does the motor network contribute information processing to mental rotation? If so, does it play a similar computational role in both mental and manual rotation, and how does it communicate with the wider network of areas involved in the mental workspace? Here we used multivariate methods and fMRI to study 24 participants as they mentally rotated 3-D objects or manually rotated their hands in one of four directions. We find that information processing related to mental rotations is distributed widely among many cortical and subcortical regions, that the motor network becomes tightly integrated into a wider mental workspace network during mental rotation, and that motor network activity during mental rotation only partially resembles that involved in manual rotation. Additionally, these findings provide evidence that the mental workspace is organized as a distributed core network that dynamically recruits specialized subnetworks for specific tasks as needed.


1997 ◽  
Vol 200 (9) ◽  
pp. 1309-1316 ◽  
Author(s):  
B Mauck ◽  
G Dehnhardt

Mental rotation is a widely accepted concept that suggests an analogue mode of visual information-processing in certain visuospatial tasks. Typically, these tasks demand the discrimination between the image and mirror-image of rotated figures, for which human subjects need an increasing reaction time depending on the angular disparity between the rotated figures. In pigeons, tests of this kind yielded a time-independent rotational invariance, suggested as being the result of a non-analogue information-processing that has evolved in response to the horizontal plane that birds perceive from above while flying. Given that marine mammals use the water surface as the horizontal plane for orientation while diving, the ability of a California sea lion to mentally rotate two-dimensional shapes was tested. Using a successive two-alternative matching-to-sample procedure, the animal had to decide between the image and mirror-image of a previously shown sample. Both stimuli were rotated by a multiple of 30 degrees with respect to the sample. The animal's reaction time was measured by a computer-controlled touch-screen device, rewarding the animal for pressing its snout against the stimulus matching the sample. A linear regression analysis of the animal's mean reaction time against the angular rotation of the stimulus yielded a significant correlation coefficient. Thus, the present data can be explained by the mental rotation model, predicting an image-like representation of visual stimuli in this species. The present results therefore correspond well with those found for human subjects, but are inconsistent with the data reported for pigeons.


2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.


Sign in / Sign up

Export Citation Format

Share Document