On-Chip RF Pulse Power Detector Using FIB as a Post-CMOS Fabrication Process

2006 ◽  
Vol 26 (1) ◽  
pp. 103-109
Author(s):  
Woochul Jeon ◽  
Todd M. Firestone ◽  
John C. Rodgers ◽  
John Melngailis
Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 833-838 ◽  
Author(s):  
Thierry Leïchlé ◽  
David Bourrier

A unique fabrication process was developed to integrate lateral porous silicon membranes into planar microfluidic channels. These mesoporous membranes were demonstrated to be suitable for on-chip dead-end microfiltration.


2007 ◽  
Vol 4 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Qing Liu ◽  
Patrick Fay ◽  
Gary H. Bernstein

Quilt Packaging (QP), a novel chip-to-chip communication paradigm for system-in-package integration, is presented. By forming protruding metal nodules along the edges of the chips and interconnecting integrated circuits (ICs) through them, QP offers an approach to ameliorate the I/O speed bottleneck. A fabrication process that includes deep reactive ion etching, electroplating, and chemical-mechanical polishing is demonstrated. As a low-temperature process, it can be easily integrated into a standard IC fabrication process. Three-dimensional electromagnetic simulations of coplanar waveguide QP structures have been performed, and geometries intended to improve impedance matching at the interface between the on-chip interconnects and the chip-to-chip nodule structures were evaluated. Test chips with 100 μm wide nodules were fabricated on silicon substrates, and s-parameters of chip-to-chip interconnects were measured. The insertion loss of the chip-to-chip interconnects was as low as 0.2 dB at 40 GHz. Simulations of 20 μm wide QP structures suggest that the bandwidth of the inter-chip nodules is expected to be above 200 GHz.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 873
Author(s):  
Nikolas Gaio ◽  
Sebastiaan Kersjes ◽  
William Quiros Solano ◽  
Pasqualina Sarro ◽  
Ronald Dekker

We present a reproducible process to directly pattern 3-Dimensional (3D) polydimethylsiloxane (PDMS) structures for Organ-on-Chips (OOC) via automated molding. The presented process employs a commercially available system from IC packaging improving the fabrication process for microfluidic channels and thin membranes, which are components frequently used in OOCs. The process removes the manual steps used previously in the fabrication of microfluidic channels and improves the control over the thickness of the PDMS layers. The process was also employed to fabricate and pattern thin PDMS membranes on silicon wafers, without the use of lithography and etching steps and in combination with 3D structures. The use of foil assisted molding techniques presented in this work is an important step toward the large-scale manufacturing of OOCs.


2006 ◽  
Vol 50 (6) ◽  
pp. 951-958
Author(s):  
Woochul Jeon ◽  
John Melngailis
Keyword(s):  

Author(s):  
Ebrahim Ghafar-Zadeh ◽  
Mohamad Sawan ◽  
Daniel Therriault

Direct-write fabrication process (DWFP) is a robotic deposition technique used to produce planar or three-dimensional (3D) microscale structures. These structures consist of paste-like filaments which are extruded through a micronozzle and deposited on a substrate [1]. These filaments are encapsulated inside an epoxy resin and then melted and removed by applying a moderate temperature for the creation of microfluidic components (e.g., microchannels, reservoirs). Following our previous reports [2–3] on the fabrication of microchannels by DWFP and high precision CMOS capacitive sensors [4], we present in this paper a microfluidic packaging procedure to realize microchannel and fluidic connections on top of CMOS chip. The compatibility of this fluidic packaging procedure with conventional electrical packaging techniques (e.g. wire bonding) is an important advantage of DWFP for CMOS based Laboratory-On-Chip applications. The fabrication challenges are discussed in the experimental section.


2022 ◽  
Vol 520 ◽  
pp. 230779
Author(s):  
B. Dousti ◽  
S. Babu ◽  
N. Geramifard ◽  
M.Y. Choi ◽  
J.B. Lee ◽  
...  

2017 ◽  
Vol 46 (3) ◽  
pp. 366-374 ◽  
Author(s):  
David del Rio ◽  
Iñaki Gurutzeaga ◽  
Ainhoa Rezola ◽  
Igone Velez ◽  
Roc Berenguer

Sign in / Sign up

Export Citation Format

Share Document