scholarly journals Fabrication Process of n-AlGaAs/GaAs Schottky Diodes for on-chip Direct Integrated with Dipole Antenna

2015 ◽  
Vol 3 (3) ◽  
pp. 81-84
Author(s):  
Norfarariyanti Parimon ◽  
Rosalyn R. Porle ◽  
Mazlina Mamat
Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 833-838 ◽  
Author(s):  
Thierry Leïchlé ◽  
David Bourrier

A unique fabrication process was developed to integrate lateral porous silicon membranes into planar microfluidic channels. These mesoporous membranes were demonstrated to be suitable for on-chip dead-end microfiltration.


2007 ◽  
Vol 4 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Qing Liu ◽  
Patrick Fay ◽  
Gary H. Bernstein

Quilt Packaging (QP), a novel chip-to-chip communication paradigm for system-in-package integration, is presented. By forming protruding metal nodules along the edges of the chips and interconnecting integrated circuits (ICs) through them, QP offers an approach to ameliorate the I/O speed bottleneck. A fabrication process that includes deep reactive ion etching, electroplating, and chemical-mechanical polishing is demonstrated. As a low-temperature process, it can be easily integrated into a standard IC fabrication process. Three-dimensional electromagnetic simulations of coplanar waveguide QP structures have been performed, and geometries intended to improve impedance matching at the interface between the on-chip interconnects and the chip-to-chip nodule structures were evaluated. Test chips with 100 μm wide nodules were fabricated on silicon substrates, and s-parameters of chip-to-chip interconnects were measured. The insertion loss of the chip-to-chip interconnects was as low as 0.2 dB at 40 GHz. Simulations of 20 μm wide QP structures suggest that the bandwidth of the inter-chip nodules is expected to be above 200 GHz.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 873
Author(s):  
Nikolas Gaio ◽  
Sebastiaan Kersjes ◽  
William Quiros Solano ◽  
Pasqualina Sarro ◽  
Ronald Dekker

We present a reproducible process to directly pattern 3-Dimensional (3D) polydimethylsiloxane (PDMS) structures for Organ-on-Chips (OOC) via automated molding. The presented process employs a commercially available system from IC packaging improving the fabrication process for microfluidic channels and thin membranes, which are components frequently used in OOCs. The process removes the manual steps used previously in the fabrication of microfluidic channels and improves the control over the thickness of the PDMS layers. The process was also employed to fabricate and pattern thin PDMS membranes on silicon wafers, without the use of lithography and etching steps and in combination with 3D structures. The use of foil assisted molding techniques presented in this work is an important step toward the large-scale manufacturing of OOCs.


2006 ◽  
Vol 26 (1) ◽  
pp. 103-109
Author(s):  
Woochul Jeon ◽  
Todd M. Firestone ◽  
John C. Rodgers ◽  
John Melngailis

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 236 ◽  
Author(s):  
Wonseok Choe ◽  
Jinho Jeong

A waveguide-to-microstrip transition is an essential component for packaging integrated circuits (ICs) in rectangular waveguides, especially at millimeter-wave and terahertz (THz) frequencies. At THz frequencies, the on-chip transitions, which are monolithically integrated in ICs are preferred to off-chip transitions, as the former can eliminate the wire-bonding process, which can cause severe impedance mismatch and additional insertion loss of the transitions. Therefore, on-chip transitions can allow the production of low cost and repeatable THz modules. However, on-chip transitions show limited performance in insertion loss and bandwidth, more seriously, this is an in-band resonance issue. These problems are mainly caused by the substrate used in the THz ICs, such as an indium phosphide (InP), which exhibits a high dielectric constant, high dielectric loss, and high thickness, compared with the size of THz waveguides. In this work, we propose a broadband THz on-chip transition using a dipole antenna with an integrated balun in the InP substrate. The transition is designed using three-dimensional electromagnetic (EM) simulations based on the equivalent circuit model. We show that in-band resonances can be induced within the InP substrate and also prove that backside vias can effectively eliminate these resonances. Measurement of the fabricated on-chip transition in 250 nm InP heterojunction bipolar transistor (HBT) technology, shows wideband impedance match and low insertion loss at H-band frequencies (220–320 GHz), without in-band resonances, due to the properly placed backside vias.


Author(s):  
GeunRyoung Choi ◽  
Seung-Ho Choi ◽  
Kook Joo Lee ◽  
Moonil Kim ◽  
Dowon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document