scholarly journals Comparison of black carbon measurement techniques for marine engine emissions using three marine fuel types

Author(s):  
Ali Momenimovahed ◽  
Stéphanie Gagné ◽  
Patrick Martens ◽  
Gert Jakobi ◽  
Hendryk Czech ◽  
...  
2012 ◽  
Vol 5 (3) ◽  
pp. 3771-3795 ◽  
Author(s):  
J. P. Schwarz ◽  
S. J. Doherty ◽  
F. Li ◽  
S. T. Ruggiero ◽  
C. E. Tanner ◽  
...  

Abstract. We evaluate the performance of the Single Particle Soot Photometer (SP2) and the Integrating Sphere/Integrating Sandwich Spectrophotometer (ISSW) in quantifying the concentration of refractory black carbon (BC) in snow samples. We find that the SP2 can be used to measure BC mass concentration in snow with substantially larger uncertainty (60%) than for atmospheric sampling (<30%). Achieving this level of accuracy requires careful assessment of nebulizer performance and SP2 calibration with consideration of the fact that BC in snow tends to larger sizes than typically observed in the atmosphere. Once these issues are addressed, the SP2 is able to measure the size distribution and mass concentration of BC in the snow. Laboratory comparison of the SP2 and the Integrating Sphere/Integrating Sandwich Spectrophotometer (ISSW) revealed significant biases in the estimate of BC concentration from the ISSW when test samples contained dust or non-absorbing particulates. These results suggest that current estimates of BC mass concentration in snow and ice using either the SP2 or the ISSW may be associated with significant underestimates of uncertainty.


Author(s):  
Honey Dawn Alas ◽  
Almond Stöcker ◽  
Nikolaus Umlauf ◽  
Oshada Senaweera ◽  
Sascha Pfeifer ◽  
...  

Abstract Background Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians’ exposure to particulate matter (black carbon (BC) and PM2.5 mass concentrations). Objective We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal factors on the pollutant concentrations influencing pedestrian exposure. Methods We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument measurement error. Results The logNNC extension significantly improved the BC model. From these model results, we found local sources and, hence, local mitigation efforts to improve air quality, have more impact on the ambient levels of BC mass concentrations than on the regulated PM2.5. Significance Firstly, this model (logNNC in bamlss package available in R) could be used for the statistical analysis of MM data from various study areas and pollutants with the potential for predicting pollutant concentrations in urban areas. Secondly, with respect to pedestrian exposure, it is crucial for BC mass concentration to be monitored and regulated in areas dominated by traffic-related air pollution.


2015 ◽  
Vol 15 (19) ◽  
pp. 11011-11026 ◽  
Author(s):  
I. Ježek ◽  
T. Katrašnik ◽  
D. Westerdahl ◽  
G. Močnik

Abstract. The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote-sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years decreased by 60 and 47 % from those in use for 5–10 years, respectively; the median NOx and PN EFs of goods vehicles that were in use for less than 5 years decreased from those in use for 5–10 years by 52 and 67 %, respectively. Surprisingly, we found an increase of BC EFs in the newer goods vehicle fleet compared to the 5–10-year old one. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally, a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25 % of emitting diesel cars contributed 63, 47 and 61 % of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements and sophisticated post processing, individual vehicle EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and monitor how the numerous emission reduction approaches are reflected in on-road driving conditions.


2013 ◽  
Vol 13 (16) ◽  
pp. 8365-8379 ◽  
Author(s):  
A. Petzold ◽  
J. A. Ogren ◽  
M. Fiebig ◽  
P. Laj ◽  
S.-M. Li ◽  
...  

Abstract. Although black carbon (BC) is one of the key atmospheric particulate components driving climate change and air quality, there is no agreement on the terminology that considers all aspects of specific properties, definitions, measurement methods, and related uncertainties. As a result, there is much ambiguity in the scientific literature of measurements and numerical models that refer to BC with different names and based on different properties of the particles, with no clear definition of the terms. The authors present here a recommended terminology to clarify the terms used for BC in atmospheric research, with the goal of establishing unambiguous links between terms, targeted material properties and associated measurement techniques.


Author(s):  
Maija Kaarina Lappi ◽  
Jyrki Matias Ristimäki

The interest on contribution of shipping to global warming and especially on polar ice melting has increased. The International Maritime Organization is working toward reporting and estimation of black carbon emissions from shipping. The filter smoke number method is discussed as one possible candidate for onboard determination of black carbon/soot concentration of the engine exhaust gas, and it has recently been considered as one of the best candidates for further evaluation in the International Council on Clean Transportation 4th workshop on marine black carbon emission. Proven, standardized technology and small size and simple operation of the filter smoke meter make it a potential choice for actual onboard use. In our study, we evaluated the validity of the filter smoke number method for measuring soot emission by looking at correlations between the filter smoke number and elemental carbon analyzed using thermal optical transmittance analysis. Until now the conversion of the filter smoke number to black carbon /soot emission has been performed with equations derived from high-speed engines operating with distillate fuels. We introduce optimized calculation parameters for filter smoke number to black carbon/soot conversion, which are derived from light and heavy fuel oil measurements. These new parameters can be utilized with improved accuracy for the estimation of the black carbon emission from filter smoke number measurement with marine fuel qualities.


2015 ◽  
Vol 15 (11) ◽  
pp. 15355-15396 ◽  
Author(s):  
I. Ježek ◽  
T. Katrašnik ◽  
D. Westerdahl ◽  
G. Močnik

Abstract. The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years, decreased by 60 and 47% from those in use for 5–10 years, respectively, the median NOx and PN EFs, of goods vehicles that were in use for less than five years, decreased from those in use for 5–10 years by 52 and 67%, respectively. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25% of emitting diesel cars contributed 63, 47 and 61% of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements with sophisticated post processing individual vehicles EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and monitor how the numerous emission reduction approaches are reflected in on-road driving conditions.


2017 ◽  
Vol 52 (4) ◽  
pp. 485-490
Author(s):  
Chiori Takahashi ◽  
Toshiaki Hayashi ◽  
Mayuko Nakamura ◽  
Akiko Masuda
Keyword(s):  

Author(s):  
Nadezhda Anatolievna Pivovarova ◽  
Alexander Fedorovich Dorokhov ◽  
Vasily Vladimirovich Shakhov ◽  
Galina Vladimirovna Vlasova ◽  
Yuliya Shirbalaevna Bayramova

The article considers the influence of the fuel magnetic treatment onto the operation of a ship engine. Many shipowners are interested in reducing their fuel consumption. Fuel efficiency is one of the most important indicators of a ship's engine. There are various methods to improve the fuel quality. In addition to traditional physical and chemical methods, wave effects are also used, for example, a magnetic treatment. The magnetic treatment effectiveness for diesel fuels has been confirmed by many studies. The analysis of the influence of the magnetic treatment of diesel fuel with a magnetic induction of 0.4 T on the operation of a 4CHN9.5/11 marine engine under different modes is carried out. Magnetic treatment of the fuel was carried out by creating a magnetic field with permanent magnets NdFeb (neodymium - iron - boron) installed in special magnetizers on the fuel line to the high-pressure fuel pump.The methods of analysis of changes in external indicators of the 4CHN9.5/11 engine during magnetic treatment of fuel are considered. The pictures of the 4CHN9.5/11 engine tested are presented. The results of the parameters of the 4CHN9.5/11 diesel engine (effective power, speed, average effective pressure, hourly fuel consumption, specific effective fuel consumption) during tests on load and screw characteristics before or after installation of the magnetizer are presented. The bench tests have confirmed that the reduction in fuel consumption when testing a diesel engine running on magnetically treated fuel makes 5-8%. It is noted that with other types of marine fuel and on other models of engines it is possible to clarify the methods of using magnetic processing in sea and river transport


2018 ◽  
Vol 11 (5) ◽  
pp. 2821-2835 ◽  
Author(s):  
John W. Birks ◽  
Peter C. Andersen ◽  
Craig J. Williford ◽  
Andrew A. Turnipseed ◽  
Stanley E. Strunk ◽  
...  

Abstract. We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2) and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2), ozone (O3), and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV) to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes) that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm−1, corresponding to ∼ 0.1 µg m−3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2) and the incorporation of design features that also enable measurement of nitric oxide (NO) in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1) an absolute quantification for NO2 based on the Beer–Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2) the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3) the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the dynamic range of concentrations that can be measured; (4) a more economical instrument than other currently available direct measurement techniques for NO2; and (5) the potential for simultaneous detection of additional species such as SO2, O3, and black carbon in the same instrument. In contrast to other commercially available direct NO2 measurements, such as cavity-attenuated phase-shift spectroscopy (CAPS), the folded tubular photometer also measures NO simultaneously in the same apparatus by quantitatively converting NO to NO2 with ozone, which is then detected by direct absorbance.


Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Emily Underwood

Brown carbon in future marine engine emissions could have a negative effect on Arctic ice.


Sign in / Sign up

Export Citation Format

Share Document