Eigenfrequecy-based damage identification method for non-destructive testing based on topology optimization

2016 ◽  
Vol 49 (3) ◽  
pp. 417-433 ◽  
Author(s):  
T. Nishizu ◽  
A. Takezawa ◽  
M. Kitamura
Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6638
Author(s):  
Andrzej Katunin

The paper presents the novel method of damage identification and quantification in beams using the Wigner-Ville distribution (WVD). The presented non-parametric method is characterized by high sensitivity to a local stiffness decrease due to the presence of damage, comparable with the sensitivity of the wavelet-based approaches, however the lack of selection of the parameters of the algorithm, like wavelet type and its order, and the possibility of reduction of the boundary effect make this method advantageous with respect to the mentioned wavelet-based approaches. Moreover, the direct relation between the energy density resulting from the application of WVD to modal rotations make it possible to quantify damage in terms of its width and depth. The results obtained for the numerical modal rotations of a beam presented in this paper, simulating the results of non-destructive testing achievable with the shearography non-destructive testing method, confirm high accuracy in localization of a damage as well as quantification of its dimensions. It was shown that the WVD-based method is suitable for detection of damage represented by the stiffness decrease of 1% and can be identified and quantified with a high precision. The presented results of quantification allowed extracting information on damage width and depth.


2011 ◽  
Vol 159 (1) ◽  
pp. 261-270
Author(s):  
Marek SZUDROWICZ ◽  
Waldemar ŚWIDERSKI

Composite armour is a preferred solution against military and paramilitary threats at present. Composite armour has to be resistant against impacts of fragments and bullets as well as mines and grenades. Except visible external damage of composite armour, its internal damage is equally essential. An IR thermography non-destructive testing method was used to identify delamination areas in composite armour. The results of these tests are presented in the paper. The authors also discuss the possibilities of composite armour repair methods.


2013 ◽  
Vol 64 (2) ◽  
pp. 21001 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Jean-Jacques Metayer ◽  
Kamel Mouhoubi ◽  
Vincent Detalle

2020 ◽  
pp. 54-59
Author(s):  
A. A. Yelizarov ◽  
A. A. Skuridin ◽  
E. A. Zakirova

A computer model and the results of a numerical experiment for a sensitive element on a planar mushroom-shaped metamaterial with cells of the “Maltese cross” type are presented. The proposed electrodynamic structure is shown to be applicable for nondestructive testing of geometric and electrophysical parameters of technological media, as well as searching for inhomogeneities in them. Resonant frequency shift and change of the attenuation coefficient value of the structure serve as informative parameters.


Sign in / Sign up

Export Citation Format

Share Document