scholarly journals Lifewide learning in the city: novel big data approaches to exploring learning with large-scale surveys, GPS, and social media

2019 ◽  
Vol 45 (2) ◽  
pp. 279-295 ◽  
Author(s):  
Catherine Lido ◽  
Kate Reid ◽  
Michael Osborne
Keyword(s):  
Big Data ◽  
2019 ◽  
pp. 1049-1070
Author(s):  
Fabian Neuhaus

User data created in the digital context has increasingly been of interest to analysis and spatial analysis in particular. Large scale computer user management systems such as digital ticketing and social networking are creating vast amount of data. Such data systems can contain information generated by potentially millions of individuals. This kind of data has been termed big data. The analysis of big data can in its spatial but also in a temporal and social nature be of much interest for analysis in the context of cities and urban areas. This chapter discusses this potential along with a selection of sample work and an in-depth case study. Hereby the focus is mainly on the use and employment of insight gained from social media data, especially the Twitter platform, in regards to cities and urban environments. The first part of the chapter discusses a range of examples that make use of big data and the mapping of digital social network data. The second part discusses the way the data is collected and processed. An important section is dedicated to the aspects of ethical considerations. A summary and an outlook are discussed at the end.


Author(s):  
Fabian Neuhaus

User data created in the digital context has increasingly been of interest to analysis and spatial analysis in particular. Large scale computer user management systems such as digital ticketing and social networking are creating vast amount of data. Such data systems can contain information generated by potentially millions of individuals. This kind of data has been termed big data. The analysis of big data can in its spatial but also in a temporal and social nature be of much interest for analysis in the context of cities and urban areas. This chapter discusses this potential along with a selection of sample work and an in-depth case study. Hereby the focus is mainly on the use and employment of insight gained from social media data, especially the Twitter platform, in regards to cities and urban environments. The first part of the chapter discusses a range of examples that make use of big data and the mapping of digital social network data. The second part discusses the way the data is collected and processed. An important section is dedicated to the aspects of ethical considerations. A summary and an outlook are discussed at the end.


2021 ◽  
pp. 1-14
Author(s):  
Wanxin Hu ◽  
Fen Cheng

With the development of society and the Internet and the advent of the cloud era, people began to pay attention to big data. The background of big data brings opportunities and challenges to the research of urban intelligent transportation networks. Urban transportation system is one of the important foundations for maintaining urban operation. The rapid development of the city has brought tremendous pressure on the traffic, and the congestion of urban traffic has restricted the healthy development of the city. Therefore, how to improve the urban transportation network model and improve transportation and transportation has become an urgent problem to be solved in urban development. Specific patterns hidden in large-scale crowd movements can be studied through transportation networks such as subway networks to explore urban subway transportation modes to support corresponding decisions in urban planning, transportation planning, public health, social networks, and so on. Research on urban subway traffic patterns is crucial. At the same time, a correct understanding of the behavior patterns and laws of residents’ travel is a key factor in solving urban traffic problems. Therefore, this paper takes the metro operation big data as the background, takes the passenger travel behavior in the urban subway transportation system as the research object, uses the behavior entropy to measure the human behavior, and actively explores the urban subway traffic mode based on the metro passenger behavior entropy in the context of big data. At the same time, the congestion degree of the subway station is analyzed, and the redundancy time optimization model of the subway train stop is established to improve the efficiency of the subway operation, so as to provide important and objective data and theoretical support for the traveler, planner and decision maker. Compared to the operation graph without redundant time, the total travel time optimization effect of passengers is 7.74%, and the waiting time optimization effect of passengers is 6.583%.


2019 ◽  
Vol 6 (3) ◽  
pp. 181375 ◽  
Author(s):  
Fan Zhang ◽  
Bolei Zhou ◽  
Carlo Ratti ◽  
Yu Liu

Understanding the visual discrepancy and heterogeneity of different places is of great interest to architectural design, urban design and tourism planning. However, previous studies have been limited by the lack of adequate data and efficient methods to quantify the visual aspects of a place. This work proposes a data-driven framework to explore the place-informative scenes and objects by employing deep convolutional neural network to learn and measure the visual knowledge of place appearance automatically from a massive dataset of photos and imagery. Based on the proposed framework, we compare the visual similarity and visual distinctiveness of 18 cities worldwide using millions of geo-tagged photos obtained from social media. As a result, we identify the visual cues of each city that distinguish that city from others: other than landmarks, a large number of historical architecture, religious sites, unique urban scenes, along with some unusual natural landscapes have been identified as the most place-informative elements. In terms of the city-informative objects, taking vehicles as an example, we find that the taxis, police cars and ambulances are the most place-informative objects. The results of this work are inspiring for various fields—providing insights on what large-scale geo-tagged data can achieve in understanding place formalization and urban design.


Author(s):  
Rasmus Helles ◽  
Jacob Ørmen ◽  
Klaus Bruhn Jensen ◽  
Signe Sophus Lai ◽  
Ericka Menchen-Trevino ◽  
...  

In recent years, large-scale analysis of log data from digital devices - often termed ""big data analysis"" (Lazer, Kennedy, King, & Vespignani, 2014) - have taken hold in the field of internet research. Through Application Programming Interfaces (APIs) and commercial measurement, scholars have been able to analyze social media users (Freelon 2014) and web audiences (Taneja, 2016) on an uprecedented scale. And by developing digital research tools, scholars have been able to track individuals across websites (Menchen-Trevino, 2013) and mobile applications (Ørmen & Thorhauge 2015) in greater detail than ever before. Big data analysis holds unique potential for studying communication in depth and across many individuals (see e.g. Boase & Ling, 2013; Prior, 2013). At the same time, this approach introduces new methodological challenges in the transparency of data collection (Webster, 2014), sampling of participants and validity of conclusions (Rieder, Abdulla, Poell, Woltering, & Zack, 2015). Firstly, data aggregation is typically designed for commercial rather than academic purposes. The type of data included as well as how it is presented depend in large part on the business interests of measurement and advertisement companies (Webster, 2014). Secondly, when relying on this kind of secondary data it can be difficult to validate the output or techniques used to generate the data (Rieder, Abdulla, Poell, Woltering, & Zack, 2015). Thirdly, often the unit of analysis is media-centric, taking specific websites or social network pages as the empirical basis instead of individual users (Taneja, 2016). This makes it hard to untangle the behavior of real-world users from the aggregate trends. Lastly, variations in what users do might be so large that it is necessary to move from the aggregate to smaller groups of users to make meaningful inferences (Welles, 2014). Internet research is thus faced with a new research approach in big data analysis with potentials and perils that need to be discussed in combination with traditional approaches. This panel explores the role of big data analysis in relation to the wider repertoire of methods in internet research. The panel comprises four presentations that each sheds light on the complementarity of big data analysis with more traditional qualitative and quantitative methods. The first presentation opens the discussion with an overview of strategies for combining digital traces and commercial audience data with qualitative interviews and quantitative survey methods. The next presentation explores the potential of trace data to improve upon the experimental method. Researcher-collected data enables scholars to operate in a real-world setting, in contrast to a research lab, while obtaining informed consent from participants. The third presentation argues that large-scale audience data provide a unique perspective on internet use. By integrating census-level information about users with detailed traces of their behavior across websites, commercial audience data combines the strength of surveys and digital trace data respectively. Lastly, the fourth presentation shows how multi-institutional collaboration makes it possible do document social media activity (on Twitter) for a whole country (Australia) in a comprehensive manner. A feat not possible through other methods on a similar scale. Through these four presentations, the panel aims to situate big data analysis in the broader repertoire of internet research methods. 


2021 ◽  
Vol 251 ◽  
pp. 01053
Author(s):  
Fang Liu ◽  
Jianyuan Gao

With the wide application of mobile Internet, Internet of Things and social media, the era of big data has come. “Smart city” is the trend of urban development and the integration of urbanization and informatization. Although it is still in the pilot stage, it has broad prospects. This paper discusses the application fields and implementation methods of big data technology in “Smart city”, and puts forward suggestions for the construction of smart city, which is helpful to improve the wisdom level of the city.


2021 ◽  
Vol 10 (3) ◽  
pp. 165
Author(s):  
Joerg Schweizer ◽  
Cristian Poliziani ◽  
Federico Rupi ◽  
Davide Morgano ◽  
Mattia Magi

A large-scale agent-based microsimulation scenario including the transport modes car, bus, bicycle, scooter, and pedestrian, is built and validated for the city of Bologna (Italy) during the morning peak hour. Large-scale microsimulations enable the evaluation of city-wide effects of novel and complex transport technologies and services, such as intelligent traffic lights or shared autonomous vehicles. Large-scale microsimulations can be seen as an interdisciplinary project where transport planners and technology developers can work together on the same scenario; big data from OpenStreetMap, traffic surveys, GPS traces, traffic counts and transit details are merged into a unique transport scenario. The employed activity-based demand model is able to simulate and evaluate door-to-door trip times while testing different mobility strategies. Indeed, a utility-based mode choice model is calibrated that matches the official modal split. The scenario is implemented and analyzed with the software SUMOPy/SUMO which is an open source software, available on GitHub. The simulated traffic flows are compared with flows from traffic counters using different indicators. The determination coefficient has been 0.7 for larger roads (width greater than seven meters). The present work shows that it is possible to build realistic microsimulation scenarios for larger urban areas. A higher precision of the results could be achieved by using more coherent data and by merging different data sources.


2021 ◽  
Vol 206 ◽  
pp. 103977 ◽  
Author(s):  
Jianxiang Huang ◽  
Hanna Obracht-Prondzynska ◽  
Dorota Kamrowska-Zaluska ◽  
Yiming Sun ◽  
Lishuai Li

Author(s):  
Peter J. Taylor ◽  
Geoff O’Brien ◽  
Phil O’Keefe

This chapter asks the question, what does this unthinking mean for current anthropogenic climate change policies? This is answered in two ways. First, the concept of urban demand is discussed in its current manifestation as the product of a global Advertising-Big Data-Social Media complex. Second, the mechanisms behind the immensity of Chinese urban growth in recent decades are described. In their different, but intertwined, ways these two expressions of today’s modernity are pointing irrevocably towards terminal consumption. The only means to stop this happening appears to a reinvention of the city, creating an urban demand for stewarding nature for future generations, a posterity city


2014 ◽  
Vol 14 (4-5) ◽  
pp. 445-459 ◽  
Author(s):  
ILIAS TACHMAZIDIS ◽  
GRIGORIS ANTONIOU ◽  
WOLFGANG FABER

AbstractData originating from the Web, sensor readings and social media result in increasingly huge datasets. The so called Big Data comes with new scientific and technological challenges while creating new opportunities, hence the increasing interest in academia and industry. Traditionally, logic programming has focused on complex knowledge structures/programs, so the question arises whether and how it can work in the face of Big Data. In this paper, we examine how the well-founded semantics can process huge amounts of data through mass parallelization. More specifically, we propose and evaluate a parallel approach using the MapReduce framework. Our experimental results indicate that our approach is scalable and that well-founded semantics can be applied to billions of facts. To the best of our knowledge, this is the first work that addresses large scale nonmonotonic reasoning without the restriction of stratification for predicates of arbitrary arity.


Sign in / Sign up

Export Citation Format

Share Document