The effects of wettability, shear strength, and Weibull characteristics of fiber-reinforced poly(lactic acid) composites

2016 ◽  
Vol 36 (5) ◽  
pp. 489-497 ◽  
Author(s):  
John O. Akindoyo ◽  
Mohammad Dalour Hossen Beg ◽  
Suriati Ghazali ◽  
Muhammad Remanul Islam

Abstract The wettability, interfacial shear strength (IFSS), and Weibull characteristics of oil palm empty fruit bunch (EFB) fibers were studied to evaluate the mechanical properties of EFB- and poly(lactic acid) (PLA)-based composites. The fiber surface was modified through ultrasound and poly(dimethyl siloxane) treatment. The effects of treatment on the morphology, wettability, and structure of fibers were examined by scanning electron microscopy, contact angle, and Fourier transform infrared spectroscopy analysis, respectively. In addition, the Weibull characteristic was used to find the variability in strength of the fibers with respect to surface treatment. Furthermore, the IFSS of EFB fiber-PLA sandwich was investigated through single-fiber pull-out test, using a less strenuous technique. The mechanical properties (tensile strength, tensile modulus, flexural strength, and flexural modulus) of the composites were determined through mechanical testing. A comparison was drawn among the properties of PLA, raw EFB fiber-based composites, and treated EFB fiber-based composites. Additionally, the inter- and intra-relationship of fiber treatment, wettability, and IFSS with the mechanical properties of the PLA/EFB composites were also accounted.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3234
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Yuhan Zhou ◽  
Yongzhe Pu ◽  
...  

To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts.


Holzforschung ◽  
2016 ◽  
Vol 70 (5) ◽  
pp. 439-447 ◽  
Author(s):  
Ru Liu ◽  
Shupin Luo ◽  
Jinzhen Cao ◽  
Yu Chen

Abstract Wood flour/polylactic acid (WF/PLA) composites were produced with a WF content of 50% based on three types of waterborne polyacrylate (PA) emulsions including a PA homopolymer emulsion and two types of silane-PA copolymer emulsions as coupling agents. Two silanes were in focus, namely, γ-methacryloxypropyl- trimethoxysilane (silane-1) and vinyltrimethoxysilane (silane-2). The emulsions and the modified WFs were characterized, and the effects were investigated in terms of emulsion type and their loading levels on the mechanical properties of WF/PLA composites. (1) Both types of silanes could be successfully copolymerized with PA to form stable emulsions. (2) With increasing PA loading, the mechanical properties (except for flexural modulus) of the composites increased at first before reaching the maximum values at 4% PA loading and then the properties worsened. However, these values were larger than those of pure composites, especially in cases when PA-silane emulsions were applied. (3) PA modified with silane-1 showed the best coupling effect among all the three PA emulsions. The results can be interpreted that PA emulsions are effective coupling agents for the preparation of high-performance WPCs.


2015 ◽  
Vol 35 (8) ◽  
pp. 753-764 ◽  
Author(s):  
Rong-yuan Chen ◽  
Wei Zou ◽  
Hai-chen Zhang ◽  
Gui-zhen Zhang ◽  
Zhi-tao Yang ◽  
...  

Abstract Poly(lactic acid) (PLA)/polypropylene (PP) blends with different weight fractions were prepared by a novel vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. The tensile strength, flexural strength and elongation at break decreased nonlinearly when the PP content was not more than 50 wt% and then increased with an increase in the PP content. The flexural modulus decreased with increasing PP weight fraction. The PLA/PP 90:10 blend exhibited the optimum impact strength. Scanning electron microscopy measurements revealed that the PLA/PP blends were immiscible. Phase separation occurred significantly at a blend ratio of 50:50. Regarding the PLA/PP 90:10 blend, the mean diameter of the disperse-phase PP particles was the smallest at 1.11 μm. Differential scanning calorimetry measurements showed that low content of PP enhanced the crystallization of PLA. The PLA component in the blends impeded the crystallization of PP when PP was used as the matrix. The thermogravimetric analysis measurement involved a two-step decomposition process of the blends. The thermal resistance of the blends was improved by compounding with PP. As compatibilizers, both the maleic anhydride-grafted PP and the ethylene/n-butyl acrylate/glycidyl methacrylate terpolymer helped improve the mechanical properties, crystallization property and thermal resistance of the PLA/PP blends.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1145 ◽  
Author(s):  
Pooria Khalili ◽  
Xiaoling LIU ◽  
Zirui ZHAO ◽  
Brina Blinzler

Natural fibre-reinforced poly(lactic acid) (PLA) laminates were prepared by a conventional film stacking method from PLA films and natural fabrics with a cross ply layup of [0/90/0/90/0/90], followed by hot compression. Natural fibre (NF) nano-hydroxyapatite (nHA) filled composites were produced by the same manufacturing technique with matrix films that had varying concentrations of nHA in the PLA. Their flammability, thermal, moisture absorption and mechanical properties were analysed in terms of the amount of nHA. The flame behavior of neat PLA and composites evaluated by the UL-94 test demonstrated that only the composite containing the highest quantity of nHA (i.e., 40 wt% nHA in matrix) was found to achieve an FH-1 rating and exhibited no recorded burn rate, whereas other composites obtained only an FH-3. The thermal degradation temperature and mass residue were also observed, via thermogravimetric analysis, to increase when increasing concentrations of nHA were added to the NF composite. The tensile strength, tensile modulus and flexural modulus of the neat resin were found to increase significantly with the introduction of flax fibre. Conversely, moisture absorption was found to increase and mechanical properties to decrease with both the presence of NF and increasing concentrations of nHA, and subsequent mechanical properties experienced an obvious reduction.


2007 ◽  
Vol 334-335 ◽  
pp. 829-832
Author(s):  
Joon Hyung Byun ◽  
Kyeong Sik Min ◽  
Yeun Ho Yu ◽  
Moon Kwang Um ◽  
Sang Kwan Lee

This study describes a method of good dispersion and alignment of VGCFs, and examines the effect of nanofiber content on the mechanical properties of nanocomposites. The dispersion of nanofibers was carried out by solution blending, mechanical mixing, and sonication. Levels of 4% – 31% volume content of VGCFs were mixed with polypropylene (PP) powder, and then were melt-mixed using a twin-screw extruder. For the further alignment of fibers, extruded rods were stacked in the mold cavity for the compression molding. In the case of 31% volume content, tensile modulus and strength improved by 100% and 40%, and the flexural modulus and strength increased by 120% and 25%, respectively. The shear modulus showed 65% increase, but the strength dropped sharply by 40%. In the transverse direction, the tensile, flexural, and shear strength decreased as more fibers were added. The matrix modification by maleic anhydride (MAPP) increased the tensile and flexural properties of VGCF/PP by 20% - 30% in the longitudinal direction, and 40% - 250% increase in the transverse direction. The fiber surface treatment by plasma improved tensile and flexural properties of untreated VGCF/PP (18 % vol) composites by 10% - 30% in the longitudinal direction, but strength in the transverse direction decreased by 30% - 40%.


2016 ◽  
Vol 47 (3) ◽  
pp. 390-407 ◽  
Author(s):  
Jianxia Yang ◽  
Luping Zhu ◽  
Zhuo Yang ◽  
Lan Yao ◽  
Yiping Qiu

Natural cellulose fiber reinforced biopolymer composites have attracted increasing attention due to environmental concerns. However, these fibers have relatively low mechanical properties and poor interfacial adhesion with matrices, limiting their composite mechanical properties. This study investigates the synergistic effect of two recently developed techniques to maximize the mechanical performance of ramie/poly (lactic acid) laminated composites, namely alkali treatment to loosen fiber molecular structure and to increase fiber surface roughness and subsequent cyclic loading treatment to fabrics to increase their tensile strength and modulus. The results show that the treated fabrics have increased crystallinity and crystal orientation factor as well as better orientation of fibers and more uniform structures, leading to 11% improvement in fabric tensile strength and 57% enhancement of tensile strength (90.9 MPa), 48% higher tensile modulus (5.6 GPa), 18% higher flexural strength (149.4 MPa), and 91% higher flexural modulus (8.2 GPa) for the corresponding composites. Meanwhile, postmortem analysis shows that better interfacial adhesion is achieved using this approach.


2019 ◽  
Vol 801 ◽  
pp. 121-126
Author(s):  
Rapeeporn Srisuk ◽  
Laongdaw Techawinyutham ◽  
Wantana Koetniyom ◽  
Rapeephun Dangtungee

The influence of bamboo charcoal (BC) in Poly (lactic) acid (PLA) matrix as masterbatch was studied on mechanical 40:60, 50:50 and 60:40 of masterbatch. BC MBs were diluted at 1 phr, 3 phr, and 5 phr. BC showed even distribution in PLA matrix; however,, it decreased compatibility in the matrix. The infusion of BC in PLA matrix enhanced the tensile modulus; however, there was a reduction in the tensile strength and the elongation at break. It could also be ascertained that there is no signification difference in the hardness of BC/PLA composites compared with neat PLA. The addition of BC slightly decreased shear viscosity of the composites. The optimal BC content in the composites was found to be 2.82wt.% (5 phr 60:40).


MRS Advances ◽  
2017 ◽  
Vol 2 (47) ◽  
pp. 2545-2550 ◽  
Author(s):  
Nicholas G. Betancourt ◽  
Duncan E. Cree

ABSTRACTPoly (lactic acid) (PLA) bioplastics are recyclable and biodegradable thermoplastics. They are derived from environmentally friendly sources such as potatoes, cornstarch and sugarcane. However, PLA is inherently brittle with low impact strength. The goal of this study is to improve mechanical properties of PLA by the addition of calcium carbonate (CaCO3) fillers. PLA composites were prepared by injection molding conventional limestone (LS) and white chicken eggshell (WES) powders with particle sizes of 63 μm and 32 μm in amounts of 5 wt. %, 10 wt. % and 20 wt. %. Mechanical properties such as, tensile strength, tensile modulus, and Charpy impact strengths were investigated. These three properties were evaluated and the results statistically analyzed using ANOVA F-test. For both particle sizes, the tensile strength decreased as the filler content increased, but was highest for a filler loading of 5 wt. %. In general, the 32 μm powder fillers had better tensile strengths than 63 μm sized fillers. The tensile modulus increased with filler content and was highest at 20 wt. % for both particle sizes. The LS/PLA composites had better toughness than the WES/PLA composites. The particle filler morphology and fractured surfaces were observed by scanning electron microscopy (SEM) and determined to have well dispersed particles with smooth fractured surfaces. Water absorption behavior of PLA/CaCO3 composites were studied by immersion in distilled water at room temperature for 56 days. Virgin PLA absorbed the least amount of water while the water absorption of CaCO3 composites were a function of powder type and content.


Sign in / Sign up

Export Citation Format

Share Document