Grain yield and N use efficiency of direct-seeded rice under different N management practices aimed to reduce N input

Author(s):  
Peng Jiang ◽  
Fuxian Xu ◽  
Lin Zhang ◽  
Mao Liu ◽  
Hong Xiong ◽  
...  
2019 ◽  
Vol 56 (Special Issue) ◽  
pp. 125-135
Author(s):  
D Panda ◽  
AK Nayak ◽  
S Mohanty

Nitrogen is the one of most limiting nutrient for rice production, and in India rice cultivation alone accounts approximately 37% of the total fertilizer-N consumption in the year 1917-18. However, 60-70% of applied N is lost from the rice ecosystem system in the form of reactive N species such as ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO), nitrogen dioxide (NO2) and nitrate (NO3) through various processes. Hence enhancing N use efficiency through improved N management is of greater importance for ensuring food security and environmental sustainability. The decisions on optimum level, time, form and method of N application are crucial to an efficient N management strategy. Earlier studies suggested blanket fertilizer recommendations for different rice ecosystems and soil test based fertilizer applications. Subsequently, innovative methods of N application including deep placement of urea super granule in reduced zone, subsurface incorporation of urea through farmer friendly methods were also recommended Recently several advancements have been made in N management practices for rice crop such as site specific N management, real time N management using leaf colour chart (LCC) and customised LCC, enhanced efficiency N fertilizers (EENF) using N transformation regulators and GIS and remote sensing (RS) - based N application technologies. The objective of this paper is to comprehensively discuss about the established and emerging N management options for improving yield, N use efficiency and environmental sustainability of rice.


2019 ◽  
Vol 56 (Special) ◽  
pp. 125-135
Author(s):  
D Panda ◽  
AK Nayak ◽  
S Mohanty

Nitrogen is the one of most limiting nutrient for rice production, and in India rice cultivation alone accounts approximately 37% of the total fertilizer-N consumption in the year 1917-18. However, 60-70% of applied N is lost from the rice ecosystem system in the form of reactive N species such as ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO), nitrogen dioxide (NO2) and nitrate (NO3) through various processes. Hence enhancing N use efficiency through improved N management is of greater importance for ensuring food security and environmental sustainability. The decisions on optimum level, time, form and method of N application are crucial to an efficient N management strategy. Earlier studies suggested blanket fertilizer recommendations for different rice ecosystems and soil test based fertilizer applications. Subsequently, innovative methods of N application including deep placement of urea super granule in reduced zone, subsurface incorporation of urea through farmer friendly methods were also recommended Recently several advancements have been made in N management practices for rice crop such as site specific N management, real time N management using leaf colour chart (LCC) and customised LCC, enhanced efficiency N fertilizers (EENF) using N transformation regulators and GIS and remote sensing (RS) - based N application technologies. The objective of this paper is to comprehensively discuss about the established and emerging N management options for improving yield, N use efficiency and environmental sustainability of rice.


2017 ◽  
Vol 54 (3) ◽  
pp. 349-362 ◽  
Author(s):  
MAINAK GHOSH ◽  
DILLIP KUMAR SWAIN ◽  
MADAN KUMAR JHA ◽  
VIRENDRA KUMAR TEWARI

SUMMARYTopdressing of N fertilizer, whenever leaf greenness, as measured by Chlorophyllmeter (SPAD), falls below the threshold value can be used for site-specific N management in wheat cultivation. Herein, a field experiment was conducted to analyse the effect of SPAD-based N management on wheat productivity and N use efficiency during the dry season of 2010/11 and 2011/12 on acid lateritic soil of eastern India. The experiment had 12 treatments, with nine treatments combining three SPAD thresholds (38, 40 and 42) and three N levels (15, 25 and 35 kg N ha−1) as real time N management (RTNM), one fixed time N management (FTNM), one farmers’ fertilizer practise (FFP) and control (Zero N), with three replications. The grain yield of RTNM ranged from 90 to 113% as that of FTNM, but using considerably less N. Maintaining SPAD threshold of 40 up to heading stage by topdressing 25 kg N ha−1 at each time (N25S40) caused the highest grain yield (4483 kg ha−1). While saving 22.5 kg N ha−1 (18.8%), N25S40 increased agronomic N use efficiency by 58.5%, nitrogen recovery efficiency by 15.1% and partial factor productivity of applied N by 26.4% when compared with conventional fertilizer recommendations (i.e. FTNM). The SPAD-based N management strategy was found very promising in efficiently managing N fertilizer in wheat for improving wheat productivity and N use efficiency.


2013 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
Jianquan Qin ◽  
S.M. Impa ◽  
Qiyuan Tang ◽  
Shenghai Yang ◽  
Jian Yang ◽  
...  

2001 ◽  
Vol 36 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Valmor Antônio Konflanz

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1157
Author(s):  
Lawrence Aula ◽  
Peter Omara ◽  
Eva Nambi ◽  
Fikayo B. Oyebiyi ◽  
William R. Raun

Improvement of nitrogen use efficiency (NUE) via active optical sensors has gained attention in recent decades, with the focus of optimizing nitrogen (N) input while simultaneously sustaining crop yields. To the authors’ knowledge, a comprehensive review of the literature on how optical sensors have impacted winter wheat (Triticum aestivum L.) NUE and grain yield has not yet been performed. This work reviewed and documented the extent to which the use of optical sensors has impacted winter wheat NUE and yield. Two N management approaches were evaluated; optical sensor and conventional methods. The study included 26 peer-reviewed articles with data on NUE and grain yield. In articles without NUE values but in which grain N was included, the difference method was employed to compute NUE based on grain N uptake. Using optical sensors resulted in an average NUE of 42% (±2.8% standard error). This approach improved NUE by approximately 10.4% (±2.3%) when compared to the conventional method. Grain yield was similar for both approaches of N management. Optical sensors could save as much as 53 (±16) kg N ha−1. This gain alone may not be adequate for increased adoption, and further refinement of the optical sensor robustness, possibly by including weather variables alongside sound agronomic management practices, may be necessary.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jacob T. Bushong ◽  
Eric C. Miller ◽  
Jeremiah L. Mullock ◽  
D. Brian Arnall ◽  
William R. Raun

With the demand for maize increasing, production has spread into more water limited, semiarid regions. Couple this with the increasing nitrogen (N) fertilizer costs and environmental concerns and the need for proper management practices has increased. A trial was established to evaluate the effects of different preplant N fertilizer sources on maize cultivated under deficit irrigation or rain-fed conditions on grain yield, N use efficiency (NUE), and water use efficiency (WUE). Two fertilizer sources, ammonium sulfate (AS) and urea ammonium nitrate (UAN), applied at two rates, 90 and 180 kg N ha−1, were evaluated across four site-years. Deficit irrigation improved grain yield, WUE, and NUE compared to rain-fed conditions. The preplant application of a pure ammoniacal source of N fertilizer, such as AS, had a tendency to increase grain yields and NUE for rain-fed treatments. Under irrigated conditions, the use of UAN as a preplant N fertilizer source performed just as well or better at improving grain yield compared to AS, as long as the potential N loss mechanisms were minimized. Producers applying N preplant as a single application should adjust rates based on a reasonable yield goal and production practice.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 554
Author(s):  
Jiangwen Nie ◽  
Lixia Yi ◽  
Heshui Xu ◽  
Zhangyong Liu ◽  
Zhaohai Zeng ◽  
...  

Chinese milk vetch (Astragalus sinicus L., vetch), a leguminous winter cover crop, has been widely adopted by farmers in southern China to boost yield of the succeeding rice crop. However, the effects of vetch on rice grain yield and nitrogen (N) use efficiency have not yet been well studied in the intensive double-cropped rice cropping systems. To fill this gap, we conducted a three-year field experiment to evaluate the impacts of the vetch crop on yields and N use efficiency in the subsequent early and late rice seasons. With moderate N input (100 kg N ha−1 for each rice crop), vetch cover significantly increased grain yields by 7.3–13.4% for early rice, by 8.2–10.4% for late rice, and by 8.6–11.5% for total annual rice production when compared with winter fallow. When rice crops received an N input of 200 kg N ha−1, vetch cover increased grain yields by 5.9–18.4% for early rice, by 3.8–10.1% for late rice, and by 6.2–11.3% for annual rice production. Moreover, comparable grain yields (11.9 vs. 12.0 Mg ha−1 for annual rice production) were observed between vetch cover with moderate N and fallow with added N fertilizer. Yield components analysis indicated that the increased tillering number was the main factor for the enhanced grain yields by vetch cover. Vetch cover with moderate and higher N input resulted in higher agronomic N use efficiency and applied N recovery efficiency compared with the fallow treatments. Here, our results showed that vetch as a winter cover crop can be combined with reduced N fertilizer input while maintaining high grain yields, thus gaining a more sustainable rice production system.


2016 ◽  
Vol 96 (3) ◽  
pp. 392-403 ◽  
Author(s):  
Dilip K. Biswas ◽  
Bao-Luo Ma

A two-year (2010–2011) field experiment was undertaken to examine the effect of nitrogen (N) rate (0, 100, 150, and 200 kg N ha−1) and N source (urea, calcium ammonium nitrate; ammonium sulphate) on canopy reflectance, chlorophyll pigments, photosynthesis, yield, grain quality, and N-use efficiency in corn. However, the physiological observations were made only in 2011. We found that stover biomass was unaffected by higher N rate beyond 150 kg N ha−1 in both years. Higher N rates did not provide a yield advantage as compared to 150 kg N ha−1 in 2010, but the highest grain yield was produced with 200 kg N ha−1 in 2011. The higher grain yield by N application was attributed to a greater kernel size in both years. Corn stover [N] was found to increase with increasing N rates in both years. Kernel [N] only responded to the high N rate in 2010. There was no change in the kernel density as affected by N rate in both years. An increased N addition resulted in a decrease in both N-uptake efficiency and agronomic-N use efficiency in both years. There was an inconsistent effect of N source on yield and N use efficiency indices in the corn over two years.


Sign in / Sign up

Export Citation Format

Share Document