Long-term impact of grain legumes and nutrient management practices on soil microbial activity and biochemical properties

Author(s):  
Dnyaneshwar Namdeo Borase ◽  
Senthilkumar Murugeasn ◽  
Chaitanya Prasad Nath ◽  
Kali Krishna Hazra ◽  
Sati Shankar Singh ◽  
...  
2013 ◽  
Vol 726-731 ◽  
pp. 3653-3656 ◽  
Author(s):  
Hui Lun Chen ◽  
Jun Yao ◽  
Fei Wang

In this study, an isothermal microcalorimetry was used to demonstrate the long-term impact of dimethyl phthalate (DMP), dipropyl phthalate (DBP), dioctyl phthalate (DOP) and dicyclohexyl phthalate (DEHP) on the soil microbial activity. Generally, the toxicity order of four phthalate esters (PAEs) is DBP>DMP>DOP>DEHP. The PAEs show inhibitory effect when the soil was exposed to PAEs for 10 days and the PAEs will have a small stimulate effect after 30 days, and then the PAEs inhibit the soil microorganisms again. The effect of PAEs on soil microbial activity is almost the same as those on urease activity.


Author(s):  
Beata Klimek ◽  
Hanna Poliwka-Modliborek ◽  
Irena M. Grześ

AbstractInteractions between soil fauna and soil microorganisms are not fully recognized, especially in extreme environments, such as long-term metal-polluted soils. The purpose of the study was to assess how the presence of Lasius niger ants affected soil microbial characteristics in a long-term metal-polluted area (Upper Silesia in Poland). Paired soil samples were taken from bulk soil and from ant nests and analysed for a range of soil physicochemical properties, including metal content (zinc, cadmium, and lead). Microbial analysis included soil microbial activity (soil respiration rate), microbial biomass (substrate-induced respiration rate), and bacteria catabolic properties (Biolog® ECO plates). Soil collected from ant nests was drier and was characterized by a lower content of organic matter, carbon and nitrogen contents, and also lower metal content than bulk soil. Soil microbial respiration rate was positively related to soil pH (p = 0.01) and negatively to water-soluble metal content, integrated into TIws index (p = 0.01). Soil microbial biomass was negatively related to TIws index (p = 0.04). Neither soil microbial activity and biomass nor bacteria catabolic activity and diversity indices differed between bulk soil and ant nests. Taken together, ant activity reduced soil contamination by metals in a microscale which support microbial community activity and biomass but did not affect Biolog® culturable bacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Demin Rao ◽  
Fangang Meng ◽  
Xiaoyan Yan ◽  
Minghao Zhang ◽  
Xingdong Yao ◽  
...  

Corn-soybean rotation and fertilization are common practices improving soil fertility and crop yield. Their effects on bacterial community have been extensively studied, yet, few comprehensive studies about the microbial activity, bacterial community and functional groups in a long-term continuous soybean cropping system after corn insertion and fertilization. The effects of corn insertions (Sm: no corn insertion, CS: 3 cycles of corn-soybean rotations and CCS: 2 cycles of corn-corn-soybean rotations) with two fertilization regimes (No fertilization and NPK) on bacterial community and microbial activity were investigated in a long-term field experiment. The bacterial communities among treatments were evaluated using high-throughput sequencing then bacterial functions were predicted based on the FaProTax database. Soil respiration and extracellular enzyme activities were used to assess soil microbial activity. Soil bacterial community structure was significantly altered by corn insertions (p < 0.01) and fertilization (p < 0.01), whereas bacterial functional structure was only affected by corn insertion (p < 0.01). The activities of four enzymes (invertase, β-glucosidase, β-xylosidase, and β-D-1,4-cellobiohydrolase) involved in soil C cycling were enhanced by NPK fertilizer, and were also enhanced by corn insertions except for the invertase and β-xylosidase under NPK fertilization. NPK fertilizer significantly improved soil microbial activity except for soil metabolic quotient (qCO2) and the microbial quotient under corn insertions. Corn insertions also significantly improved soil microbial activity except for the ratio of soil induced respiration (SIR) to basal respiration (BR) under fertilization and the qCO2 was decreased by corn insertions. These activity parameters were highly correlated with the soil functional capability of aromatic compound degradation, which was the main predictors of bacterial functional structure. In general, the combination of soil microbial activity, bacterial community and corresponding functional analysis provided comprehensive insights into compositional and functional adaptations to corn insertions and fertilization.


2017 ◽  
Vol 63 (No. 7) ◽  
pp. 300-306 ◽  
Author(s):  
Gałązka Anna ◽  
Gawryjołek Karolina ◽  
Grządziel Jarosław ◽  
Księżak Jerzy

The aim of the study was to determine the glycoproteins content (total glomalin (TG), easily extractable glomalin (EEG) and soil proteins related to glomalin (GRSP)) in soil under long-term monoculture of maize. Soil microbiological and biochemical properties, including microbial biomass and enzymatic activity were also assessed. The presence of total, easily-extractable glomalin and soil proteins related to glomalin was dependent on both the growth phase of the plant and tillage system. The highest content of glomalin was detected in the soils under maize in direct sowing and reduced tillage. The glomalin content was correlated with soil biological activity. The linear regression was observed between TG and GRSP content, but no linear relationship was found between GRSP and C<sub>org</sub>. The principal component analysis showed the strong correlations between the parameters of soil quality and biodiversity indicators. Selected indicators of soil microbial parameters explained 52.27% biological variability in soils.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 852
Author(s):  
Hannah R. Rodgers ◽  
Jay B. Norton ◽  
Linda T. A. van Diepen

Agricultural management decisions on factors such as tillage, fertilization, and cropping system determine the fate of much of the world’s soils, and soil microbes both mediate and respond to these changes. However, relationships between management practices and soil microbial properties are poorly understood, especially in semiarid regions. To address this knowledge gap, we reviewed research papers published between 2000 and 2020 that analyzed soil microorganisms in semiarid wheat fields. We aimed to determine if and how soil microbial properties reliably respond to management, and how these properties indicate long-term changes in soil health, carbon (C) sequestration, and crop yield. We found that reducing tillage increases microbial activity as much as 50% in upper soil layers and stratifies both bacteria and fungi by depth. Higher cropping intensity (reduced fallow) increases C storage, microbial activity, and biomass, and particularly fungal biomass, which can be three times greater under continuous wheat than wheat-fallow. Chemical and organic fertilizers both increase bacterial biomass, though only organic inputs provide lasting benefits by promoting C storage and increasing fungal as well as bacterial biomass. We found microbial properties to be sensitive indicators of long-term changes in soil health and productivity, and formed recommendations on appropriate sampling, analysis, and interpretation of microbial data depending on the system studied.


Ecotoxicology ◽  
2014 ◽  
Vol 23 (10) ◽  
pp. 2035-2040 ◽  
Author(s):  
Qi Zhang ◽  
Xiaomei Liu ◽  
Xiaojun Ma ◽  
Jian Fang ◽  
Tinglu Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document