scholarly journals Ant nests as a microbial hot spots in a long-term heavy metal-contaminated soils

Author(s):  
Beata Klimek ◽  
Hanna Poliwka-Modliborek ◽  
Irena M. Grześ

AbstractInteractions between soil fauna and soil microorganisms are not fully recognized, especially in extreme environments, such as long-term metal-polluted soils. The purpose of the study was to assess how the presence of Lasius niger ants affected soil microbial characteristics in a long-term metal-polluted area (Upper Silesia in Poland). Paired soil samples were taken from bulk soil and from ant nests and analysed for a range of soil physicochemical properties, including metal content (zinc, cadmium, and lead). Microbial analysis included soil microbial activity (soil respiration rate), microbial biomass (substrate-induced respiration rate), and bacteria catabolic properties (Biolog® ECO plates). Soil collected from ant nests was drier and was characterized by a lower content of organic matter, carbon and nitrogen contents, and also lower metal content than bulk soil. Soil microbial respiration rate was positively related to soil pH (p = 0.01) and negatively to water-soluble metal content, integrated into TIws index (p = 0.01). Soil microbial biomass was negatively related to TIws index (p = 0.04). Neither soil microbial activity and biomass nor bacteria catabolic activity and diversity indices differed between bulk soil and ant nests. Taken together, ant activity reduced soil contamination by metals in a microscale which support microbial community activity and biomass but did not affect Biolog® culturable bacteria.

2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S74-S80 ◽  
Author(s):  
E. Gömöryová ◽  
K. Střelcová ◽  
J. Škvarenina ◽  
J. Bebej ◽  
D. Gömöry

: In November 2004, forest stands in the Tatra National Park (TANAP) were affected by windthrow and in July 2005, the wildfire broke out on a part of the affected area. The objective of this study is to evaluate the impact of the windthrow and fire disturbances on soil microbial activity. Basal and potential soil respiration, N-mineralisation, catalase activity, soil microbial biomass, and cellulase activity were measured in soil samples taken from the A-horizon (depth of 0–10 cm) along 100 m transects established on 4 plots (reference site, burnt, non-extracted, and extracted sites) in October 2006. Some soil microbial characteristics exhibited a high spatial variability, especially microbial biomass and N-mineralisation. Significant differences in soil microbial characteristics (especially basal soil respiration and catalase activity) between plots were found. Generally, the highest microbial activity was revealed on the plot affected by fire. Soil microbial activity was similar on the extracted and non-extracted sites.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


2013 ◽  
Vol 726-731 ◽  
pp. 3653-3656 ◽  
Author(s):  
Hui Lun Chen ◽  
Jun Yao ◽  
Fei Wang

In this study, an isothermal microcalorimetry was used to demonstrate the long-term impact of dimethyl phthalate (DMP), dipropyl phthalate (DBP), dioctyl phthalate (DOP) and dicyclohexyl phthalate (DEHP) on the soil microbial activity. Generally, the toxicity order of four phthalate esters (PAEs) is DBP>DMP>DOP>DEHP. The PAEs show inhibitory effect when the soil was exposed to PAEs for 10 days and the PAEs will have a small stimulate effect after 30 days, and then the PAEs inhibit the soil microorganisms again. The effect of PAEs on soil microbial activity is almost the same as those on urease activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Demin Rao ◽  
Fangang Meng ◽  
Xiaoyan Yan ◽  
Minghao Zhang ◽  
Xingdong Yao ◽  
...  

Corn-soybean rotation and fertilization are common practices improving soil fertility and crop yield. Their effects on bacterial community have been extensively studied, yet, few comprehensive studies about the microbial activity, bacterial community and functional groups in a long-term continuous soybean cropping system after corn insertion and fertilization. The effects of corn insertions (Sm: no corn insertion, CS: 3 cycles of corn-soybean rotations and CCS: 2 cycles of corn-corn-soybean rotations) with two fertilization regimes (No fertilization and NPK) on bacterial community and microbial activity were investigated in a long-term field experiment. The bacterial communities among treatments were evaluated using high-throughput sequencing then bacterial functions were predicted based on the FaProTax database. Soil respiration and extracellular enzyme activities were used to assess soil microbial activity. Soil bacterial community structure was significantly altered by corn insertions (p < 0.01) and fertilization (p < 0.01), whereas bacterial functional structure was only affected by corn insertion (p < 0.01). The activities of four enzymes (invertase, β-glucosidase, β-xylosidase, and β-D-1,4-cellobiohydrolase) involved in soil C cycling were enhanced by NPK fertilizer, and were also enhanced by corn insertions except for the invertase and β-xylosidase under NPK fertilization. NPK fertilizer significantly improved soil microbial activity except for soil metabolic quotient (qCO2) and the microbial quotient under corn insertions. Corn insertions also significantly improved soil microbial activity except for the ratio of soil induced respiration (SIR) to basal respiration (BR) under fertilization and the qCO2 was decreased by corn insertions. These activity parameters were highly correlated with the soil functional capability of aromatic compound degradation, which was the main predictors of bacterial functional structure. In general, the combination of soil microbial activity, bacterial community and corresponding functional analysis provided comprehensive insights into compositional and functional adaptations to corn insertions and fertilization.


2020 ◽  
Vol 12 (9) ◽  
pp. 199
Author(s):  
Maria Josiane Martins ◽  
Tânia Santos Silva ◽  
Igor Paranhos Caldas ◽  
Geovane Teixeira de Azevedo ◽  
Isabelle Carolyne Cardoso ◽  
...  

The allocation of the large amount of swine waste from farms is an international concern. An efficient way of managing such waste is its use in farming. It is already known that the incorporation of organic waste into the soil significantly increases the microbial population. Therefore, the objective was to evaluate the impact of the use of swine manure on the soil microbiota in a Eutrophic Oxisol. The experiment was set up in a completely randomized design in a 6 × 4 factorial scheme (sixconcentrations of swine manure and four evaluation periods) with four replications. We evaluate the following characteristics: microbial respiration (C-CO2), microbial biomass (µC g-1 soil) and pH.: microbial respiration (C-CO2), microbial biomass (µC g-1 soil) and pH. A significant effect was found in the interaction between concentrations and time of incubation (p < 0.05) of swine manure on microbial activity in the soil. The amount of microbial carbon increased as a function of increased levels of liquid swine manure. No interaction was observed between concentrations and time of incubation for the pH. The evaluation of the isolated factors allowed to observe that the pH decreased as the doses of manure were incremented. Higher and lower pH values were found after 5 and 30 days of incubation. The application of liquid swine manure up to 6000 L ha-1 increases the release of CO2 and carbon in the microbial biomass. The applications of liquid swine manure cause a gradual reduction in soil pH.


2019 ◽  
Vol 9 (19) ◽  
pp. 3963
Author(s):  
Xiuxiu Feng ◽  
Lu Zhang ◽  
Fazhu Zhao ◽  
Hongying Bai ◽  
Russell Doughty

Microbial biomass, extracellular enzyme activity, and their stoichiometry in soil play an important role in ecosystem dynamics and functioning. To better understand the improvement of sand soil quality and the limitation of soil nutrients after adding feldspathic sandstone, we investigated changes in soil microbial activity after 10 months of mixing feldspathic sandstone and sand, and compared the dynamics with soil properties. We used fumigation extraction to determine soil microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP), and microplate fluorometric techniques to measure soil β-1,4-glucosidase (BG), β-1,4-xylosidase (BX), β-D-cellobiohydrolase (CBH), N-acetyl-β-glucosaminidase (NAG), and Alkaline phosphatase (AKP). We also measured soil organic carbon (SOC), pH, electrical conductivity (EC), soil inorganic carbon (SIC), and soil water content (SWC). Our results showed that the soil microbial biomass C, N, P, and individual extracellular enzyme activities significantly increased in mixed soil. Similarly, the soil microbial biomass C:N, C:P, N:P, MBC:SOC, and BG:NAG significantly increased by 54.3%, 106.3%, 33.1%, 23.0%, and 65.4%, respectively. However, BG:AKP and NAG:AKP decreased by 19.0% and 50.3%, respectively. Additionally, redundancy analysis (RDA) and Pearson’s correlation analysis showed that SWC, SOC, porosity and field capacity were significantly associated with soil microbial biomass indices (i.e., C, N, P, C:N, C:P, N:P in microbial biomass, and MBC:SOC) and extracellular enzyme activity metrics (i.e., individual enzyme activity, ecoenzymatic stoichiometry, and vector characteristics of enzyme activity), while pH, EC, and SIC had no correlation with these indices and metrics. These results indicated that mixing feldspathic sandstone and sand is highly susceptible to changes in soil microbial activity, and the soil N limitation decreased while P became more limited. In summary, our research showed that adding feldspathic sandstone into sand can significantly improve soil quality and provide a theoretical basis for the development of desertified land resources.


Ecotoxicology ◽  
2014 ◽  
Vol 23 (10) ◽  
pp. 2035-2040 ◽  
Author(s):  
Qi Zhang ◽  
Xiaomei Liu ◽  
Xiaojun Ma ◽  
Jian Fang ◽  
Tinglu Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document